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ABSTRACT 

TCP was conceived to ensure reliable node-to-node communication in moderate-

bandwidth, moderate-latency, WANs. As it is now a mature Internet standard, it is the 

default connection-oriented protocol in networks built from commodity components, 

including Internet data centers. Data centers, however, rely on high-bandwidth, low-

latency networks for communication. Moreover, their communication patterns, especially 

those generated by distributed applications such as MapReduce, often take the form of 

synchronous multi-node to node bursts. Under the right conditions, the network switch 

buffer overflow losses induced by these bursts confuse TCP’s feedback mechanisms to the 

point that TCP throughput collapses. This collapse, termed TCP Incast, results in gross 

underutilization of link capacities, significantly degrading application performance. 

Conventional approaches to mitigating Incast have focused on single-path 

solutions, for instance, adjusting TCP’s receive windows and timers, modifying the 

protocol itself, or adopting explicit congestion notifications. This thesis explores 

complementary multi-path approaches to avoiding Incast’s onset. The principal idea is to 

use the regularity and high connectivity of typical data center networks, such as the 

increasingly popular fat-tree topology, to better distribute multi-node to node bursts across 

the available paths, thereby avoiding the switch buffer overflows that induce TCP Incast. 

The thesis’s main contributions are: (1) development of new oblivious, multi-path, 

routing schemes for fat-tree networks, (2) derivation of relations between the schemes and 

Incast’s onset, and (3) investigation of a novel “front-back” approach to minimizing the 

packet reordering introduced by multipath routing. Formal analyses are focused on relating 

schemes’ worst-case loading of certain network resources – expressed as oblivious 
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performance ratios (OPRs) – to Incast’s onset. Potential benefits are assessed through ns-3 

simulations on fat-trees under a variety of communication patterns. Results indicate that 

over a variety of experimental conditions, the proposed schemes reduce the incidence of 

TCP Incast compared to standard routing schemes. 
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PUBLIC ABSTRACT 

The transmission control protocol (TCP) is the principle standard governing the 

reliable exchange of messages in the Internet. Originally conceived for application in wide 

area computer networks (WANs) encompassing large geographic areas operating at 

moderate speeds, it faces new challenges in highly localized, high-speed, data center 

networks supporting newly ubiquitous Internet services such as Internet search and social 

networking. The challenge is that messaging in these networks often occurs in large, 

synchronous many-to-one bursts in which many computers simultaneously respond to a 

single computer’s query with parts of the query’s answer. Under the right conditions, these 

simultaneous responses overload network switches, resulting in a steep decline in the TCP 

data rate. This decline, termed TCP Incast, significantly degrades application performance, 

impacting customer experience. 

Conventional approaches to mitigating Incast have focused on single-path 

solutions, in which all messages in a stream follow a single network path to the destination. 

This thesis explores complementary multi-path approaches to avoiding Incast’s onset. The 

principal idea is to use the regularity and high connectivity of typical data center networks, 

such as the increasingly popular fat-tree architecture, to better distribute messages across 

the available paths, thereby avoiding the network switch overloads that induce TCP Incast. 

Potential benefits are assessed through simulations. Results indicate that over a variety of 

experimental conditions, the proposed schemes reduce the incidence of TCP Incast 

compared to standard message passing schemes. 
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CHAPTER 1  

INTRODUCTION 

The TCP “Incast” problem is significant for data centers. It causes data transfers to 

miss their deadlines, degrades customer experience and eventually impacts revenue. 

Conventional approaches to overcoming this problem are focused on single-path solutions, 

e.g., adjusting TCP’s receive windows and timers, modifying the protocol itself, or 

adopting explicit congestion notifications. Today’s newer data center topologies allow for 

multiple paths between nodes. In this dissertation, we develop new oblivious, multi-path, 

routing schemes for fat-tree networks to alleviate the Incast problem. In addition, we derive 

relations between the schemes and Incast’s onset, and investigate a novel “front-back” 

approach to minimizing the packet reordering introduced by multipath routing. 

1.1   Background and Motivation 

1.1.1   The Data Center Incast Problem 

Nowadays, with fast growth of the Internet and its increased popularity, large 

companies such as Google and Microsoft rely on Internet data centers to provide important 

services like search and social collaboration to their customers. Many applications 

deployed in these data centers require significant network bandwidth. For example, 

implementations of the MapReduce [1] programming model, such as Apache Hadoop [2], 

rely on the shuffling of large amounts of data among data center nodes. On the other hand, 

these applications often have strict latency requirements. During a web search request, for 

instance, the client’s queries are simultaneously sent to multiple backend servers, whose 
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responses are then aggregated and processed. Typical deadlines range from 10 to 100ms, 

and those not received in time are discarded. 

 
 

 

Figure 1.1: A simplified data center Incast model from [3]. 

 
 

 

Figure 1.2: TCP Incast collapse on a 48-node cluster from [4]. 

 
 

Most data centers use TCP for inter-node communication. When, as in Figure 1.1, 

simultaneous data transfers from multiple processing nodes to a single receiving node 

overfill network switch buffers, the resulting intense packet loss may lead to TCP timeouts 
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long enough (100s of milliseconds or more) to collapse throughput. This drastic reduction 

of throughput, termed Incast, causes data transfers to miss their deadlines, affecting the 

quality of results, and degrading customers’ experiences. 

From a user’s perspective, Incast is caused by the typical “barrier-synchronized 

request workload” in data center applications such as web search and clustered storage. In 

this type of workload, each data block is striped over multiple servers. A client node sends 

simultaneous requests to these servers, which then respond with a fragment of the data 

block. Traffic in the network is highly synchronized due to multiple servers responding to 

the client at the same time. This intense, synchronized traffic overflows network switch 

buffers, resulting in severe packet loss and long TCP timeouts. Because the client must 

wait for all fragments in the current data block to arrive before sending a new batch of 

requests, all transfers are halted during the timeout, leading to a steep decline in perceived 

application-level throughput (goodput). 

Shown in Figure 1.2 is a TCP Incast collapse observed on a 48-node cluster. We 

see that as the number of concurrent servers sending data to the receiver increases, there is 

a drastic drop in overall application throughput, eventually degrading to less than 5% of 

the initial value. 

Incast was first observed by Andersen et al. in their INCAST project [5, 6]. It was 

subsequently studied by Chen et al. [3, 7]. In today’s data centers, Incast communication 

patterns can be observed in many popular applications, such as cluster-based storage 

systems [8, 9], Big Data [10], data analytics [11-13] and Apache Hadoop [2]. 

To address the Incast problem, researchers have proposed different approaches, 

including application layer approaches [14-16], modifying the TCP protocol [4, 17-19], 
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adjusting the TCP congestion or receiver window [20, 21], use of congestion notification 

[22-25], centralized flow scheduling [26, 27], and use of multiple network paths. We will 

discuss multipath approaches in more detail in Section 1.2. 

1.1.2   Newer Data Center Topologies with Multiple Paths 

Although data centers can be built using specialized hardware with custom 

communication protocols such as Infiniband [28] and Myrinet [29], the high costs of such 

solutions limit their adoption. Many data centers choose to instead use off-the-shelf 

commodity products such as Ethernet based routers and switches. Figure 1.3 shows a 

traditional data center topology where multiple hosts are connected to an access switch1 

and multiple access switches are then connected to an aggregation switch, etc. In such 

topologies, there exist very few to no alternate paths between any two hosts. 

 
 
 

 

Figure 1.3: A traditional data center topology from [30]. 

 
 

                                                 
1 We use the term switch throughout the rest of this dissertation to refer to devices capable of both layer 2 
switching and layer 3 routing. 
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The evolution of data center topologies allows for multiple paths between each 

source-destination node pair. Recently, researchers have proposed many new topologies, 

e.g., the fat-tree [31], VL2 [32], DCell [33], BCube [34], Monsoon [35] and CamCube 

[36]. The fat-tree is popular in today’s data centers. It was proposed in 1985 by Leiserson 

in [37] and is a special instance of the “Clos topology” [38] invented by Charles Clos for 

telephone networks in 1953. 

1.1.3   The Fat-Tree Architecture 

The fat-tree architecture, originally proposed in 1985 by Leiserson in [37], is an 

increasingly popular choice in today’s newer data centers due to its full bisection 

bandwidth, and has been widely deployed. Typical dimensions of fat-trees used in data 

centers involve two- or three-tiers of switches plus one-tier of processing nodes. 

 
 
 

 

Figure 1.4: A FT(4, 3) 4-pod fat-tree topology from [31], with the 
multiple paths between 010 and 201 highlighted. 
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Definition 1.1 [39]. A fat-tree is an m-port n-tree 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), built from 𝑛𝑛 tiers of m-port 

switches (𝑚𝑚 a power of 2), with the following characteristics: 

1. The height of 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) is 𝑛𝑛 + 1. 

2. 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) consists of 2 × �𝑚𝑚
2
�
𝑛𝑛

 nodes and  (2𝑛𝑛 − 1)  × �𝑚𝑚
2
�
𝑛𝑛−1

 m-port switches. 

We label the nodes in 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) as 𝑃𝑃(𝑝𝑝 = 𝑝𝑝0𝑝𝑝1 … 𝑝𝑝𝑛𝑛−1), where 𝑝𝑝 ∈ {0,1, … ,𝑚𝑚 −

1}  ×  �0,1, … ,𝑚𝑚
2
− 1�

𝑛𝑛−1
.  The switches are labeled as 𝑆𝑆𝑆𝑆 < 𝑤𝑤 = 𝑤𝑤0𝑤𝑤1 …𝑤𝑤𝑛𝑛−2, 𝑙𝑙 > , 

where 𝑙𝑙 ∈ {0,1, … ,𝑛𝑛 − 1} is the level of the switch and 

𝑤𝑤 ∈ �
�0,1, … ,

𝑚𝑚
2
− 1�

𝑛𝑛−1
                    , if 𝑙𝑙 = 0

{0,1, … ,𝑚𝑚− 1} × �0,1, … ,
𝑚𝑚
2
− 1�

𝑛𝑛−2
 , if 𝑙𝑙 ∈ {1,2, … ,𝑛𝑛 − 1}

. (1. 1) 

An m-port 3-tree 𝐹𝐹𝐹𝐹(𝑚𝑚, 3) has 4 sub-fat-trees (“pods”), with two layers of switches 

in each: lower-level “edge” switches and upper-level “aggregation” switches, as shown in 

Figure 1.4. The four paths between 010 and 201 are highlighted. Each edge switch connects 

𝑚𝑚
2

 processing nodes. At the top level, there are �𝑚𝑚
2
�
2
 “core” switches interconnecting the 

𝑚𝑚 pods. In 𝐹𝐹𝑇𝑇(𝑚𝑚, 3), there are 2 ×  �𝑚𝑚
2
�
3
 hosts and 5 ×  �𝑚𝑚

2
�
2
 switches in total. 

One major advantage of fat-trees is the high degree of path diversity. For an m-port 

3-tree, there are �𝑚𝑚
2
�
2

 equal-cost paths between each source-destination pair, each 

corresponding to a core switch. Routing between two processing nodes in different sub-

fat-trees consists of two phases: from the source node to a core switch (“upward”), and 

from the core switch to the destination node (“downward”). During the first phase, each 

switch can select from its 𝑚𝑚
2

 different next hops. However, once a core switch is selected, 

the second phase is deterministic. 
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1.1.4   Oblivious Routing vs. Adaptive Routing 

Oblivious routing refers to routing schemes that are designed without knowledge 

of the actual traffic demands of a network. For every source-destination node pair, a fixed 

route, or a randomized rule for choosing routes, is selected in advance, irrespective of how 

much traffic any pair sends or is expected to send. In contrast, adaptive routing schemes 

permit the route taken by packets to be affected by the routes taken by other packets in the 

network. Consequently, the routes selected for source-destination node pairs may change 

dynamically depending on real-time network traffic conditions. 

Because adaptive routing is dependent on real-time traffic conditions, it requires 

accurate estimates of network traffic flows, which can be difficult to obtain, especially in 

dynamic environments. Considering these difficulties, recent routing research has focused 

on identifying good oblivious schemes because they are significantly easier to implement. 

By designing a good oblivious routing scheme, we can ensure the network is robust to 

traffic pattern changes. In this dissertation, all our proposed schemes are oblivious schemes. 

1.2   Related Work 

Can we use the multiple paths available in newer data centers to better balance 

traffic and thereby avoid Incast? A number of researchers have proposed multipath 

approaches to load balancing. These include Valiant load balancing (VLB) [32, 35, 40], 

equal-cost multi-path routing (ECMP) [31], adaptive load balancing (ALB) [41], 

centralized flow scheduling [42], static VLANs [43-46] and multipath TCP (MPTCP) [47-

49] and variants AMTCP [50], MMPTCP [51] and MPTCP-L [52]. Recent surveys of 

multipath transmission include [53, 54]. Far fewer researchers have considered using these 
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approaches to combat Incast. These include EW-MPTCP [55], CONGA [56], XMP [57] 

and FUSO [58]. In the remainder of this subsection we briefly describe the key schemes. 

 
 
 

 

Figure 1.5: ECMP load balancing from [59]. 

 
 

Equal-cost multi-path routing (ECMP) [31] configures ECMP-enabled switches 

with multiple packet forwarding paths. An arriving packet for which there exists multiple 

candidate paths is forwarded based on a hash of selected fields in its header (“5-tuple”: 

source and destination IPs, protocol type, source and destination ports). Thus, the traffic 

load is split across multiple paths. Figure 1.5 shows an example. Traffic from source to 

destination is routed via three equal-cost paths (all with cost 5), marked by red, blue and 

black arrows, respectively. 

In ECMP, network traffic is split based on flow-granularity, to avoid the problem 

of packet reordering which degrades TCP throughput. However, all flows may have 

different timing and/or durations, hence load imbalance can occur in the network which 

creates hot-spots and leads to poor resource utilization. For example, a hash collision is 
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possible [42] between large, long-lived flows (i.e. they are routed on the same link), 

creating a bottleneck and resulting in poor load balancing. 

Valiant load balancing (VLB) [32, 35, 40] is a method closely related to ECMP. It 

tries to achieve load-balancing by first routing each packet from a source switch to a set of 

randomly selected intermediate switches, which then forward it to the destination. To avoid 

packet reordering, VLB is usually performed at the flow-level [32] rather than packet-level. 

The former is largely equivalent to ECMP. 

Centralized flow scheduling has also been proposed by researchers [42]. The 

scheduler assigns large flows to less congested paths, and may reassign existing flows to 

increase overall throughput in the network. However, it has been shown that the scheduler 

does not scale, due to its inherent overhead [48]. To more efficiently use a centralized 

scheduler, other researchers proposed to treat differently flows with short duration, and 

flows which are long-running and carry significant amounts of data [60-63]. They termed 

these “mice” and “elephants”, respectively. Different techniques have been proposed for 

detecting the “elephants”, either from the end hosts or from the switches in the network. 

Multipath TCP (MPTCP) [47-49] is an extension for TCP, that allows the use of 

multiple paths for resilience and load balancing. Published in 2013 as an experimental 

IETF RFC [49], MPTCP splits each connection into multiple regular TCP subflows, on 

which traffic is multiplexed based on perceived congestion. A complex formula [64] is 

used to couple the congestion window increase between subflows. Under certain cases, 

MPTCP outperforms regular TCP, achieving a higher throughput. However, by routing 

traffic over multiple paths, MPTCP could induce a high degree of packet reordering, which 

results in additional delay before in-order data can be delivered to the applications. A 

survey of TCP packet reordering issues under multipath can be found in [65]. 
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EW-MPTCP [55] is an extension to MPTCP that mitigates Incast collapse through 

a new congestion control algorithm. Besides the native coupled congestion control  [64] 

performed by MPTCP, each subflow in EW-MPTCP is allowed to perform additional 

congestion control by dynamically adjusting the congestion window based on the number 

of responding servers. The goal is to improve fairness at the shared bottleneck links, where 

multiple TCP subflows in MPTCP could compete with a single path TCP flow. 

Congestion Aware Balancing (CONGA) [56] is a network-based distributed load 

balancing scheme for data centers. Each TCP flow is first divided into flowlets, then 

allocated to different paths based on real-time congestion information aggregated from 

multiple switches. However, CONGA relies on global knowledge of congestion in the 

network, which is difficult to achieve without significant overhead.  

Explicit Multipath (XMP) [57] congestion control aims to balance throughput with 

latency in data center networks. It uses MPTCP and has two components: the Buffer 

Occupancy Suppression (BOS) algorithm and the Traffic Shifting (TraSh) algorithm. The 

former employs Explicit Congestion Notification (ECN) [22] to control latency for small 

flows, while the latter shifts traffic among subflows to improve throughput of large flows. 

Fast Multi-path Loss Recovery (FUSO) [58] utilizes multiple paths in data center 

networks for transport loss recovery, with a focus on reducing the TCP flow completion 

time (FCT). In the event of potential packet loss on one subflow within the multi-path 

transport, recovery packets are immediately sent over another subflow with lower packet 

loss and has space in its congestion window. This is very different from our proposed 

schemes, because in FUSO, the multiple paths are only used to transmit recovery packets. 
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The current techniques have either proved too simple to be effective at alleviating 

Incast, or, in the case of the MPTCP coupled congestion control, too complex to be 

implemented and could induce packet reordering. What should we do? 

1.3   Key Idea 

We use network regularity to overcome Incast through multipath routing. Multipath 

routing [66] is a routing technique that can be used to alleviate network congestion through 

load balancing. Traffic load is distributed across the network by utilizing the existing 

multiple routes for routing traffic from a source to a destination. According to the “resource 

pooling principle” [67], this can effectively shift traffic away from congested links and 

increase overall network utilization. 

Our approaches differ from existing ones in that: 

1. They provide a low overhead means to reduce the likelihood of Incast, due to the 

simple routing setup that reduces packet processing time. 

2. They avoid packet reordering and minimize context switches by design. 

3. They are scalable and well suited for large networks, because of their compact 

storage of routing information. 

So far, we have investigated two specific approaches: 

1. Multipath Routing via Dynamic NIx-Vectors. 

2. Virtual Table-Based Multipath Routing (specifically, Dual IPv4/IPv6 Routing). 

A key problem with all multipath approaches is packet reordering. We minimize 

reordering via a novel multipath scheduling algorithm we term the Front-Back Algorithm. 
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1.4   Estimation of Best-Case Improvement 

We can estimate the potential gain in perceived application-level throughput 

(goodput) attainable through Incast avoidance using throughput models developed in [3] 

and [7]. To begin assume, as in [7], a fixed fragment workload, i.e., all nodes’ responses to 

queries are of fixed size, and assume that TCP’s delayed ACK feature is enabled. Let 𝐺𝐺𝑆𝑆𝐼𝐼𝐼𝐼 

and 𝐺𝐺𝑆𝑆𝐼𝐼𝐼𝐼 denote the throughput of 𝑆𝑆 senders in Incast-susceptible (IS) and Incast-free (IF) 

networks, respectively, and define: 

D – total amount of data to be sent (100 blocks of 256 KB each) 

L – total transfer time of the workload without any TCP re-transmission timeout 

(RTO) events 

R – number of RTO events during the transfer 

r – value of the minimum RTO (i.e. 𝑅𝑅𝑅𝑅𝑂𝑂𝑚𝑚𝑚𝑚𝑚𝑚) timer value, set to 200ms 

I – inter-packet wait time 

From [7], the 𝑆𝑆-sender throughput in an Incast susceptible network can be approximately 

modeled as 

𝐺𝐺𝑆𝑆𝐼𝐼𝐼𝐼 =
𝑆𝑆 × 𝐷𝐷

𝐿𝐿 + (𝑅𝑅 × 𝑟𝑟) . (1. 2) 

Moreover, from [7], L is related to I and D through 

𝐿𝐿 =
𝐷𝐷

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ
𝑆𝑆

+ �
𝐷𝐷

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
� × 𝐼𝐼 , (1. 3) 

where Bandwidth is assumed to be 1Gbps (= 125,000,000 bytes/s) in the authors’ testbed, 

and averageMSS the average maximum segment size, is set to 1500 bytes. 

Fitting a piece-wise quadratic polynomial to [7]’s empirical data yields S to R relation 
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𝑅𝑅 = �0.679 𝑆𝑆2 − 4.04 𝑆𝑆 + 5.5  ,             𝑆𝑆 ≤ 8
 −0.0859 𝑆𝑆2 + 4.24 𝑆𝑆 − 11.1  ,    𝑆𝑆 > 8

 . (1. 4) 

Similarly, fitting a piece-wise quadratic polynomial to [7]’s empirical data one finds that 

𝐼𝐼 = �0.0988 𝑆𝑆2 − 0.485 𝑆𝑆 + 0.786  , 𝑆𝑆 ≤ 8
−0.00433 𝑆𝑆2 + 0.237 𝑆𝑆 + 1.63  ,      𝑆𝑆 > 8

 . (1. 5) 

 
 
 

 

Figure 1.6: Estimated best-case improvement to throughput. (a) Predicted throughput w/ 
Incast, using Eq. 1.6. (b) Ideal throughput w/o Incast, using Eq. 1.7. 

(c) Estimated % improvement to throughput, using Eq. 1.8. (d) Same as (c), 
except using empirical data. 
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Substituting I into Eq. 1.3, and L and R into Eq. 1.2, we find             

𝐺𝐺𝑆𝑆𝐼𝐼𝐼𝐼 = �
   

26214400 𝑆𝑆
1.86 𝑆𝑆2 − 9.07 𝑆𝑆 + 14.84

 ,        𝑆𝑆 ≤ 8

26214400 𝑆𝑆
−0.0929 𝑆𝑆2 + 5.20 𝑆𝑆 + 26.3

  ,    𝑆𝑆 > 8
 . (1. 6) 

To calculate the ideal throughput when Incast is avoided, we use Eq. 1 from [3]. 

𝐺𝐺𝑆𝑆𝐼𝐼𝐼𝐼 =
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑅𝑅𝑅𝑅𝑅𝑅 +  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ×  𝑆𝑆
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ

 ×  𝑆𝑆 , (1. 7) 

where blockSize is 256KB, and RTT is set to 2ms which is the observed value in the authors’ 

testbed in [7]. We can then compute 

𝐺𝐺𝑆𝑆𝐼𝐼𝐼𝐼 − 𝐺𝐺𝑆𝑆𝐼𝐼𝐼𝐼

𝐺𝐺𝑆𝑆𝐼𝐼𝐼𝐼
=

⎩
⎨

⎧     
7812500 × (1.86 𝑆𝑆2 − 9.28 𝑆𝑆 + 14.6)

16384 𝑆𝑆 + 15625
 , 𝑆𝑆 ≤ 8

   −  
78125 × (9.29 𝑆𝑆2 − 499 𝑆𝑆 − 2607)

16384 𝑆𝑆 + 15625
  , 𝑆𝑆 > 8

 . (1. 8) 

The estimated throughput in the Incast-susceptible and Incast-free cases, and the 

possible percent improvement seen in the absence of Incast, are plotted in Figure 1.6. 

Figure 1.6 (a) shows predicted throughput across S senders under Incast, using Eq. 1.6. 

The ideal throughput without Incast is shown in Figure 1.6 (b) by applying Eq. 1.7. Figure 

1.6 (c) illustrates the estimated percent of improvement to throughput, using Eq. 1.8. 

Figure 1.6 (d) was generated without using the piece-wise fitted equations for calculating 

I and R, but instead use the empirically observed data from Figure 16 in [7]. 

From these plots, we observe that in the best case, there can be more than 3000% 

maximum improvement to the throughput across S senders. While a 3000% improvement 

may seem high, given the drastic impact Incast has on throughput, as shown in Figure 1.2, 
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it is not unreasonable. The decrease in improvement starting from S = 9 (note that we still 

have more than 1500% improvement at S = 25) can be explained as follows: Because every 

flow must traverse the “bottleneck” link at the receiver (as shown in Figure 1.1), the ideal 

aggregated throughput is capped by the bandwidth on that link (1Gbps). On the other hand, 

the throughput under Incast improves slightly with increasing number of concurrent 

senders. This is the reason behind the decrease we see in the figure. 

1.5   Summary of Our Contributions 

In this dissertation, we use network regularity to overcome Incast through multipath 

routing. In Chapter 2, we develop two novel oblivious, multi-path, routing schemes for fat-

tree networks. These include Multipath Routing via Dynamic NIx-Vectors and Virtual 

Table-Based Multipath Routing, with Dual IPv4/IPv6 Routing as a specific example. Our 

scalable approaches provide a low overhead means to reduce the likelihood of Incast. We 

conclude with a discussion of irregular traffic extensions for the proposed schemes. 

In Chapter 3, we establish a relationship between the proposed multipath routing 

schemes and the avoidance of Incast’s onset. First, we note, using Kulkarni’s model of 

synchronized, many-to-one TCP flows, that reducing flow loss probabilities delays the 

onset of Incast. Next, we observe, from well-known results on switch buffer sizing, that 

flow loss probabilities can be reduced by reducing switch loads. Finally, we show by 

formal analysis that the worst-case loads – the loads most responsible for TCP Incast – are 

reduced by our proposed routing schemes. 

A key problem, faced by all approaches to routing packets over multiple paths, is 

packet reordering. In Chapter 4, we investigate a novel “front-back” approach to 

minimizing the packet reordering introduced by multipath routing. We establish the 
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optimality of an algorithm implementing our front-back approach for 2 paths, and then 

briefly discuss how this Front-Back Algorithm could be integrated into existing protocols. 

Its performance is then contrasted to other proposed algorithms for combating multipath 

reordering, with examples highlighting its advantages. We conclude with a discussion of 

the Front-Back Algorithm’s N-path extension (N > 2) and examples illustrating the 

extension’s potential advantages. 

Our performance analysis in Chapter 5 begins with an investigation of the proposed 

routing schemes. We focus on their worst-case loading of certain network resources – 

expressed as oblivious performance ratios (OPRs). We then explore typical Incast traffic 

patterns in data center networks, and describe a novel method of traffic matrix 

decomposition to help visually illustrate and classify traffic patterns. Finally, we assess the 

potential benefits of our schemes through ns-3 simulations on fat-trees under a variety of 

traffic conditions. Results indicate that over a variety of experimental conditions, the 

proposed schemes reduce the incidence of TCP Incast compared to standard routing 

schemes. 
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CHAPTER 2  

MULTIPATH ROUTING FOR DATA CENTER NETWORKS 

In this chapter, we investigate the root cause and key points related to TCP Incast, 

and develop two novel oblivious, multi-path, routing schemes for fat-tree networks. We 

conclude with a discussion of irregular traffic extensions for the proposed schemes.  

2.1   What Causes Incast? – A Brief Investigation 

The problem of data center Incast was first observed by Andersen et al. in their 

INCAST project [5, 6]. It arises in high bandwidth, low latency, networks when 

simultaneous data transfers from multiple senders to a single receiver overflow a bottleneck 

switch buffer. The ensuing intense synchronous packet loss may induce excessively large 

TCP re-transmission timeouts (on the order of hundreds of milliseconds) that reduce 

perceived application-level throughput (goodput) to a fraction of available bandwidth. 

Thus, data transfers miss their deadlines, affecting quality of the result, degrading customer 

experience and eventually impacting revenue. 

The root causes for data center Incast include synchronized many-to-one request 

patterns (in applications such as MapReduce [1]) and the high bandwidth, low latency 

Ethernet links causing a mismatch of TCP’s retransmission timeout and increased penalty. 

This is further aggravated by the highly synchronous nature of data transfer in data center 

applications, leading to a drastic drop in network or application throughput. 

Three key features of data centers make them particularly susceptible to Incast. 

First, data center operators typically rely on commodity switches to reduce costs. These 

switches usually have limited buffer space. Second, data transfer patterns in data center 
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networks are usually “bursty”, in the form of barrier-synchronized request workloads. For 

example, in the “MapReduce” application, simultaneous requests from a master node are 

periodically sent to multiple slave nodes. Upon receiving these requests, the slave nodes 

respond with data they have or perform calculations. Third, to maintain data integrity, the 

request/response process is usually synchronous with tight deadlines, i.e. the next batch of 

requests cannot start until all slave nodes have replied to the current batch of requests. 

Therefore, if there is switch buffer overflow during a batch, the system will wait for the 

uncompleted responses and delaying processing of the next batch and thereby decreasing 

performance. 

2.2   Multipath Routing via Dynamic NIx-Vectors 

To take advantage of the multiple paths, better balance traffic and reduce the 

likelihood of data center Incast, we have developed two novel routing schemes, Multipath 

Routing via Dynamic NIx-Vectors and Virtual Table-Based Multipath Routing. To the best 

of our knowledge, no similar schemes have been proposed in the literature. 

2.2.1   What is a NIx-Vector 

The original NIx-Vector concept was introduced by Riley et al. in 2001 [68]. NIx-

Vector (neighbor-index vector) Routing is a form of source routing. It stores, very 

compactly in the packet header, a complete source-to-destination routing path. Because of 

its efficient route storage, NIx-Vector Routing is well-suited for large network topologies. 

As packets are being generated at a source node for transmission, a routing cache 

is first searched for a previously built NIx-Vector for the destination. If none exists, the 

NIx-Vector is built by performing a breadth-first search (BFS), and then storing a neighbor-
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index for each hop along the path indicating which outgoing interface should be used to 

route the packet. At the time of routing, the appropriate neighbor-index is extracted from 

the NIx-Vector by switches at each hop, which then transmit the packet through the 

indicated interface. This process repeats until the destination is reached. 

 

Table 2.1: NIx-Vector creation example from [68]. 

 
 
 
 

Table 2.1 [68] shows an example for NIx-Vector creation. In the table, Ci is the 

number of neighbors at each hop; Bi equals ⌊log2 𝐶𝐶𝑖𝑖⌋, the number of bits needed for storing 

routing decision; NIx specifies the neighbor-index chosen for packet routing; NVU is the 

used counter; and NIx-Vector lists the NIx-Vector generated with that hop’s information 

appended. 

2.2.2   Details of Proposed Algorithm 

We modify NIx-Vector routing for use in data center networks. In the original NIx-

Vector concept, if multiple shortest paths were found during the breadth-first search (BFS), 
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only the first path is used to compute the NIx-Vector. To take advantage of the multiple 

paths available in newer data center topologies such as the fat-tree, we modify the said BFS 

algorithm, to return multiple (or multiple sets of) shortest paths on demand. In other words, 

our modified algorithm is flexible. For example, we can achieve randomized load 

balancing (RLB) if the shortest path used to compute the NIx-Vector is randomly selected 

from all shortest paths discovered by BFS. A comparison of this algorithm with the original 

BFS is shown in Figure 2.1. 

 
 

 

Figure 2.1: (a) Pseudocode of original BFS from [69], 
(b) Our modified BFS algorithm to achieve RLB. 

 
 

Compared to normal table-based routing, where only one path is used, the new 

scheme allows better load balancing within the data center and hence, helps to alleviate the 

Incast problem. 

To enable multipath capabilities while avoiding packet reordering, we combine 

Dynamic NIx-Vector Routing with a novel Front-Back Algorithm, to be discussed in 

Chapter 4. 
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2.3   Virtual Table-Based Multipath Routing 

2.3.1   Algorithm Description 

We also investigate an approach we term Virtual Table-Based Multipath Routing, 

which takes advantage of multiple network layer stacks installed on a switch to balance 

traffic. 

This approach has some resemblance to “ensemble routing” [43, 44], which 

exploits multiple virtual local area networks (VLANs) to route traffic. However, our 

approach has several significant differences: 

1. It uses static routing tables which do not have the overhead of VLAN packet tags. 

2. It avoids the costs of VLAN creation and management. 

3. Unlike VLAN which operates in Layer 2, the data link layer of the network stack, 

our scheme operates in Layer 3, the network layer. 

2.3.2   Example: Dual IPv4/IPv6 Routing 

Dual IPv4/IPv6 Routing can serve as an example of Virtual Table-Based Routing. 

With the rapid adoption of IPv6 in recent years, many switches come with support for both 

IPv4 and IPv6, and companies are rapidly deploying IPv6 in their infrastructures. By 

setting up different routing tables for IPv4 and IPv6, we can obtain two different paths for 

each source-destination pair. 

To enable multipath capabilities while avoiding packet reordering, we combine 

Dual IPv4/IPv6 Routing with the Front-Back Algorithm, to be discussed in Chapter 4. 

Our setup of dual IPv4/IPv6 static routing is inspired by the source modulo k (s-

mod-k) [70, 71] and destination modulo k (d-mod-k) [39, 72-74] routing schemes for system 



www.manaraa.com

22 

 

 

 

area networks. To illustrate how these schemes work, we use the network in Figure 1.4 as 

an example. 

 
 

 

Figure 2.2: Our setup of static routing for IPv4 (top) and IPv6 (bottom). 

 
 

In d-mod-k, during the first stage of routing (edge switch to aggregation switch), 

packets with consecutive destinations are to be shuffled between the two up-links. To do 

this, the least significant bit (LSB) of destination node label is checked, and the packet is 

forwarded to the switch with the same LSB in its label. During the second stage of routing 
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(aggregation switch to core switch), the second least significant bit (SLSB) of destination 

node label is checked, with a similar forwarding process as in the first stage. 

The s-mod-k scheme only differs from d-mod-k in one respect: it checks source 

nodes’ labels instead of destination nodes’ labels. Researchers have shown that s-mod-k 

and d-mod-k have similar performance [75]. 

We set up dual IPv4 and IPv6 static routing as shown in Figure 2.2. Thickened lines 

denote the default upward forwarding route for each switch for IPv4 and IPv6, respectively. 

Compared to the s-mod-k and d-mod-k schemes, our approach has the following advantages: 

1. Due to the use of static routing tables, the switches are freed from the tasks of 

constantly checking source/destination addresses and matching LSB or SLSB bits 

for every packet. Instead, they can now be installed with a single default upward 

forwarding route. This saves time and greatly lowers processing overhead. 

2. Our approach avoids traffic imbalance in the cases that the load from each node is 

different. 

To illustrate point 2 above, assume that the loads from nodes 000, 001, 010 and 011, 

in Figure 1.4, are 8, 4, 2 and 10, respectively. Now look only at the leftmost sub-fat-tree. 

Under our scheme, the loads on the upward ports of switches <00, 2> and <01, 2> are 6, 6, 

6 and 6 (left to right). Likewise, the loads on switches <00, 1> and <01, 1> are 6, 6, 6 and 

6. Under the s-mod-k routing scheme, the loads on the upward ports of switches are less 

balanced, namely, 8, 4, 2 and 10, on switches <00, 2> and <01, 2> and 8, 2, 4 and 10 on 

switches <00, 1> and <01, 1>. 
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2.4   Irregular Traffic Extensions 

Applications deployed in real data centers may have very different communication 

patterns (flow timing and length), leading to irregular traffic within the network. If we 

make the additional assumption of irregular network traffic, how should our proposed 

schemes change? 

 
 

 

Figure 2.3: Bipartite graph for finding the 
maximum-load traffic pattern from [76]. 

 
 

In this scenario, we expect to change the algorithm for path selection in our 

proposed schemes. The techniques that we will discuss in Chapter 3 for analyzing the 

incurred switch load can be utilized to pre-calculate the load on each switch in the network 

under different traffic patterns and routing policies. With this information, we can adjust 

path selection to optimize for the worst-case pattern within the given set of traffic patterns. 

Specifically, for the proposed scheme Multipath Routing via Dynamic NIx-Vectors, instead 
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of randomly picking a path from the pool of available shortest paths, we now set the 

probability that a switch is to be selected based on this information. 

Going in the reverse direction, what if we have already selected a routing scheme, 

and want to know its performance under different traffic patterns? The authors of [76] 

derived a procedure for computing the worst-case traffic pattern, i.e., the pattern that 

generates the maximum load over all links. To find the pattern that gives the highest load 

on a link 𝑐𝑐, the first step is to generate a bipartite graph as shown in Figure 2.3. In the graph, 

vertices for every source node are placed on the left, and those for the destination nodes 

are placed on the right. Each edge is labeled γc(s,d) denoting the load on switch 𝑐𝑐 by unit 

traffic from 𝑠𝑠 to 𝑑𝑑. By finding a maximum-weight matching of the graph, we obtain the 

permutation that induces maximum load on 𝑐𝑐. This procedure is repeated for all links in 

the network to find the worst-case traffic pattern. 

2.5   Conclusions 

In this chapter, we first highlighted the root cause and key points related to TCP 

Incast. These include the synchronized many-to-one request patterns in data centers, the 

commodity network switches with limited buffer space, and the high bandwidth, low 

latency Ethernet links causing a mismatch of the TCP timeout. 

To take advantage of the existing multiple paths in newer data center topologies 

such as the fat-tree, we developed two novel oblivious, multi-path routing schemes 

Multipath Routing via Dynamic NIx-Vectors and Virtual Table-Based Multipath Routing, 

with Dual IPv4/IPv6 Routing as a specific example. Our scalable approaches provide a low 

overhead means to reduce the likelihood of Incast. We concluded this chapter with a 

discussion of irregular traffic extensions for the proposed schemes. 
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CHAPTER 3  

BRIDGING THE PROPOSED SCHEMES TO INCAST 

In this chapter, we establish a relationship between the proposed multipath routing 

schemes and the avoidance of Incast’s onset. First, we note, using Kulkarni’s model of 

synchronized, many-to-one TCP flows, that reducing flow loss probabilities delays the 

onset of Incast. Next, we observe, from well-known results on switch buffer sizing, that 

flow loss probabilities can be reduced by reducing switch loads. Finally, we show by 

formal analysis that the worst-case loads – the loads most responsible for TCP Incast – are 

reduced by our proposed routing schemes. 

3.1   TCP Incast and Flow Loss Rate 

TCP Incast is typically defined as the drastic drop in perceived application-level 

throughput (goodput), observed when bursts of synchronized many-to-one TCP flows 

overfill network switch buffers, resulting in packet losses that confuse TCP’s congestion 

control mechanisms to the point that timeouts become excessive. Data center transfers are 

particularly susceptible to Incast because their networks exhibit high bandwidth with low 

latency, and most single-node requests spawn synchronized multi-node replies from large 

numbers of nodes. 

One of the earliest explicit models of the relationship between packet loss and 

perceived application layer throughput in the presence of large numbers of competing 

synchronized flows was proposed by Kulkarni in his 2012 dissertation [77]. Kulkarni 

identifies two principle causes of Incast. The first, which he terms Anterior Block Transfer 

Timeout (ABTT), arises when, due to TCP’s short-term unfairness, some synchronized, 
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many-to-one block transfers finish earlier than others. As the transfers are synchronized, 

those that finish early must wait for the others to finish. TCP, seeing the bandwidth freed 

by the early finishers’ waits, increases the transmission windows of those flows that remain 

active to sizes that could not be sustained had the early finishers’ flows transmissions not 

been suspended. Consequently, when the next round of block transfers begins, the buffers 

in some bottleneck switch are overwhelmed by these outsized window transmissions, 

resulting in substantial packet losses. Should any flow lose all of the packets in its 

transmission window, a timeout ensues that, again due to block synchronization, halts all 

flows’ transmissions until the timeout expires and the packets are successfully 

retransmitted, thereby collapsing throughput. 

The second key cause, termed Intermediate Block Transfer Timeout (IBTT), arises 

when a sender responding to a many-to-one query does not receive enough duplicate 

ACKs, after a packet loss, for TCP to trigger an immediate resend of the missing packets. 

Instead, the sending flow’s TCP waits one timeout period before resending the packets and 

then resets the sender’s transmission window to one. Once again, all flows’ transmissions 

are halted until the timeout expires and the last packets in the block are successfully 

retransmitted, collapsing throughput. Kulkarni shows that IBTT is the principle cause of 

Incast when the number of involved flows is small while ABTT predominates otherwise. 

More importantly for our purposes, he demonstrates, via an analytic extension of Padhye 

et al.’s well-known single-flow TCP model [78] to the case of multiple synchronized flows 

that, as one might intuitively expect, the onset of Incast due to both mechanisms is highly 

correlated to flow packet loss, and consequently, that strategies that reduce packet loss, 

such as increasing switch buffer size, delay the onset of Incast. Figure 3.1, from [77] 
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illustrates the fidelity of the model compared to ns-2 simulation under the conditions 

superimposed on the model. 

 
 

 

Figure 3.1: Comparison of the split model to Incast simulation results, with the 
simulation conditions overlaid. [77] 

 
 

Next, we use established results from switch buffer sizing theory to show that we 

can reduce the loss rate of TCP flows in fat-tree networks by reducing the switch loads. 

3.2   Switch Load and Flow Loss Rate 

The topic of switch buffer sizing has been an area of active research since the early 

1990s. It is of interest to us because it can be used to size buffers and avoid Incast given 
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worst case bounds on switch buffers. In a classic 1994 paper [79], Villamizar and Song 

demonstrated that, although WAN TCP throughput can be collapsed by sufficiently large 

reductions in queuing capacity, such collapses can be avoided when the random early 

detection queueing discipline (RED) is employed, and queuing capacities are maintained 

at or above links’ bandwidth-delay products. This results in the widely-used guideline that 

each link should have a buffer size of 𝐵𝐵 = 𝑅𝑅𝑅𝑅𝑅𝑅������ × 𝐶𝐶, where 𝑅𝑅𝑅𝑅𝑅𝑅������ is the average round-trip 

time of flows through that link, and 𝐶𝐶 is the link’s data rate. 

In [80], Morris analyzed the effect of passing large numbers of TCP flows through 

switches. Packet loss rates approaching 50% were observed, causing noticeable delays for 

users. He proposed that instead of allocating only one round-trip time of buffering, switches 

should be provisioned to have buffer space proportional to the number of active flows. In 

a subsequent paper [81], he proposed a model aimed at explaining as well as predicting 

loss rates for TCP traffic, and introduced a new algorithm for switch buffering, he termed 

“flow-proportional queuing (FPQ).” Under FPQ, TCP is controlled by changing the queue 

length in the switch in proportion to the number of active TCP connections. It is claimed 

that FPQ can accommodate heavy TCP traffic without causing high loss rates. 

In 2004, Appenzeller et al. [82], proposed the “Stanford model” for switch buffer 

sizing. Their main claim was that the widely-used guideline that each link should have a 

buffer of 𝐵𝐵 = 𝑅𝑅𝑅𝑅𝑅𝑅������ × 𝐶𝐶 no longer holds for backbone switches. They showed that when 

large numbers of multiplexed TCP connections are in their congestion avoidance phases, 

they tend to become un-synchronized and hence require smaller buffers. As the standard 

deviation of aggregate load decreases with √𝑛𝑛, their new guideline was  𝐵𝐵 = (𝑅𝑅𝑅𝑅𝑅𝑅������ ×

𝐶𝐶)/√𝑛𝑛 , where n is the number of flows (short-lived and long-lived) sharing the target link. 



www.manaraa.com

30 

 

 

 

The authors claimed that use of the new rule allowed buffer size requirements to be reduced 

by up to 99% with no noticeable change in throughput. 

A critical assumption of the model is that TCP flows have varying round-trip times, 

which lead to de-synchronization as they traverse common links. Without this assumption, 

the flows can become synchronized and behave like a single “big” TCP flow, which then 

again requires a buffer size of 𝐵𝐵 = 𝑅𝑅𝑅𝑅𝑅𝑅������ × 𝐶𝐶. Because the RTT is largely fixed in data 

center networks, the above paper’s results are not applicable to our work. 

More recently, a series of papers by Dovrolis et al. made further contributions to 

buffer sizing. In [83], they raised concerns about the “Stanford model”, pointing out that 

while setting 𝐵𝐵 = (𝑅𝑅𝑅𝑅𝑅𝑅������ × 𝐶𝐶)/√𝑛𝑛 does not lead to significant link utilization loss when a 

link carries many TCP flows, it can cause excessively high loss rates (up to 5%~15%) for 

these flows. This results in TCP re-transmissions and throughput drops, as well as 

significant variability in throughput and latency. 

The paper distinguished between “long” and “short” TCP flows. Short flows spend 

all their time in the slow-start phase, while long flows follow the linear “saw tooth” pattern 

in the phase of congestion avoidance. An important observation made in [83] is that one 

cannot classify flows simply by looking at their sizes. When the network is uncongested, 

even a big-size flow can keep staying in slow-start phase. On the other hand, in congested 

networks, short flows can go into the congestion avoidance phase early and spend most of 

their time there. The authors also claimed that those long flows which are bottlenecked at 

links other than the target link should be excluded from the n flows used in calculating 

bandwidth in the Stanford model. Flows that are primarily limited by the TCP receiver’s 

advertised window should also be excluded. 
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An additional important result in [83] is the authors’ expression of the loss rate 𝑝𝑝 

experienced by TCP flows at a bottleneck link as a function, 

𝑝𝑝 =
(0.87 𝑁𝑁)2

�𝐶𝐶 ×  𝑇𝑇𝑝𝑝 + 𝐵𝐵�
2  , (3. 1) 

of the buffer size 𝐵𝐵, where 𝑁𝑁 denotes the number of flows, 𝑇𝑇𝑝𝑝, the round-trip propagation 

delay, and 𝐶𝐶, the link’s capacity. In other words, the loss rate 𝑝𝑝 increases with the square 

of the number of flows 𝑁𝑁 at the bottleneck link. Furthermore, for fixed 𝑁𝑁, the loss rate 𝑝𝑝 

decreases slowly with increasing buffer size 𝐵𝐵, following a power law. Thus, one can 

reduce the loss rate 𝑝𝑝 of TCP flows by reducing the traffic load on network switches, or 

the number of flows N traversing each switch in the fat-tree network. 

3.3   Reduced Switch Load under Proposed Schemes 

In this section, we first outline important properties of fat-trees, and define key fat-

tree routing terminology. We then show, via formal analysis that the worst-case switch 

loads – the loads most responsible for TCP Incast – are reduced by our proposed routing 

schemes. 

3.3.1   Fat-Tree Properties 

m-port n-trees 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), fat-trees constructed from n-tiers of m-port switches, 

have the following properties: 

Property 1 [84]. 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛)  contains 𝑚𝑚 , m-port n-1-trees (sub-fat-trees denoted by 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚,𝑛𝑛 − 1)), 𝑚𝑚 × 𝑚𝑚
2

, m-port n-2-trees (sub-fat-trees denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚,𝑛𝑛 −

2)), …, and 𝑚𝑚 × �𝑚𝑚
2
�
𝑛𝑛−2

, m-port 1-trees (sub-fat-trees denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚, 1)). 
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Property 2 [84]. Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚, 𝑡𝑡) be the smallest sub-fat-tree in 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) that contains 

processing nodes 𝑎𝑎 and 𝑏𝑏. Then there exist �𝑚𝑚
2
�
𝑡𝑡−1

 different shortest paths from 𝑎𝑎 to 𝑏𝑏. If 

such a sub-tree does not exist, there are �𝑚𝑚
2
�
𝑛𝑛−1

 different shortest paths from 𝑎𝑎 to 𝑏𝑏. In this 

case, 𝑎𝑎 and 𝑏𝑏 are in different top level sub-fat-trees 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚,𝑛𝑛 − 1). 

Property 3 [84]. In  𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) , when there exist �𝑚𝑚
2
�
𝑥𝑥

 different shortest paths from 

processing node 𝑠𝑠 to processing node 𝑑𝑑, each of the level 𝑛𝑛 − 1 − 𝑡𝑡, 0 ≤  𝑡𝑡 ≤ 𝑥𝑥, up/down 

links that carry traffic from 𝑠𝑠 to 𝑑𝑑 is used by �𝑚𝑚
2
�
𝑥𝑥−𝑡𝑡

 shortest paths. 

Property 4. In 𝐹𝐹𝐹𝐹(𝑚𝑚, 𝑛𝑛), when there exist �𝑚𝑚
2
�
𝑥𝑥
 different shortest paths from processing 

node 𝑠𝑠 to processing node 𝑑𝑑, each of the level 𝑛𝑛 − 1 − 𝑡𝑡, 0 ≤  𝑡𝑡 ≤ 𝑥𝑥, switches that carry 

traffic from 𝑠𝑠 to 𝑑𝑑 is used by �𝑚𝑚
2
�
𝑥𝑥−𝑡𝑡

 shortest paths. 

Property 5 [84]. In 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), a level 𝑡𝑡, 0 ≤  𝑡𝑡 ≤ 𝑛𝑛 − 1, up link carries traffic from at most 

�𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

 source nodes. A level 𝑡𝑡 down link carries traffic to at most �𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

 destination nodes. 

Property 6. In 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), a 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 (“core”) switch carries traffic from at most 2 × �𝑚𝑚
2
�
n
 

source nodes. A 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡, 0 <  𝑡𝑡 ≤ 𝑛𝑛 − 1, switch carries traffic from/to at most �𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

 

source/destination nodes in that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚, 𝑡𝑡). 

Proof: By construction, 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) has 2 × �𝑚𝑚
2
�
n

 processing nodes. In the worst case, 

traffic from all nodes passes through a single 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 switch. On the other hand, each 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 (0 < 𝑡𝑡 ≤ 𝑛𝑛 − 1) switch has 𝑚𝑚
2

 “up” and “down” links, respectively. Thus, from 

fat-tree Property 5, each switch carries traffic from/to at most �𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

× 𝑚𝑚
2

= �𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

  

source/destination nodes in that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚, 𝑡𝑡). □ 
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3.3.2   Fat-Tree Routing: Definitions 

To meaningfully compare routing schemes, it is essential to have metrics. Given 

that Incast is a worst-case phenomenon, it natural to look for worst case metrics. In this 

section, we extend [84]’s approach to assessing routing schemes’ effects on worst case link 

loads to that of assessing routing schemes’ effects on worst case switch loads. Since in fat-

trees all links have the same capacity, comparing maximum link loads is equivalent to 

comparing maximum link utilizations. 

We begin by reviewing traffic and routing characterizations, and link load bounds, 

from [84]. Throughout we assume that all fat-tree links are full-duplex, with the same 

capacity in both the up (away from the processing nodes) and down (toward the processing 

nodes) channel directions. 

Definition 3.1 [84]. Matrix 𝑇𝑇𝑇𝑇 with entries 𝑡𝑡𝑡𝑡𝑖𝑖,𝑗𝑗 ≥ 0, 0 ≤ 𝑖𝑖 ≤ 𝑁𝑁 − 1 and 0 ≤ 𝑗𝑗 ≤ 𝑁𝑁 − 1, 

is said to be a traffic matrix for fat-tree 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) , when 𝑁𝑁 = 2 × �𝑚𝑚
2
�
n

 and 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 

specifies the amount of traffic sent from node 𝑖𝑖 to node 𝑗𝑗. 

To lower bound the worst-case link load induced by a traffic matrix 𝑇𝑇𝑇𝑇, note first 

that the total traffic sent from any node 𝑖𝑖 is ∑ 𝑡𝑡𝑡𝑡𝑖𝑖,𝑗𝑗𝑗𝑗 , and the total traffic received at 𝑖𝑖 is 

∑ 𝑡𝑡𝑡𝑡𝑗𝑗,𝑖𝑖𝑗𝑗 . Because 𝑖𝑖 connects to the fat-tree via a single local full-duplex link, it follows that 

the maximum load on 𝑖𝑖’s local link is 𝑚𝑚𝑎𝑎𝑎𝑎�∑ 𝑡𝑡𝑡𝑡𝑖𝑖,𝑗𝑗𝑗𝑗 ,∑ 𝑡𝑡𝑡𝑡𝑗𝑗,𝑖𝑖𝑗𝑗 �. Consequently, the worst-

case link load induced by 𝑇𝑇𝑇𝑇 over all links’ up and down channels under any routing 

policy is lower bounded by maximum over all nodes’ link’s local up and down channels. 

This bound motivates the following definition. 
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Definition 3.2 [84]. The base load imposed on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) by traffic matrix 𝑇𝑇𝑇𝑇 is 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) = 𝑚𝑚𝑚𝑚𝑚𝑚
0≤𝑖𝑖≤𝑁𝑁−1

�𝑚𝑚𝑚𝑚𝑚𝑚 �� 𝑡𝑡𝑡𝑡𝑖𝑖,𝑗𝑗
𝑗𝑗

,� 𝑡𝑡𝑡𝑡𝑗𝑗,𝑖𝑖
𝑗𝑗

�� . (3. 2) 

The actual worst-case link load induced in a fat-tree by traffic matrix 𝑇𝑇𝑇𝑇 depends 

on the fat-tree’s routing scheme. 

Definition 3.3 [84]. A routing 𝑟𝑟 for fat-tree 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) is defined by 

(1) A set of paths 𝑃𝑃𝑖𝑖,𝑗𝑗 = �𝑃𝑃𝑖𝑖,𝑗𝑗1 ,𝑃𝑃𝑖𝑖,𝑗𝑗2 , … ,𝑃𝑃𝑖𝑖,𝑗𝑗
�𝑃𝑃𝑖𝑖,𝑗𝑗��, between each source-destination (SD) 

pair (𝑖𝑖, 𝑗𝑗) in 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), 

(2) A path weighting 𝑓𝑓𝑖𝑖,𝑗𝑗 = �𝑓𝑓𝑖𝑖,𝑗𝑗𝑘𝑘 �𝑘𝑘 = 1,2, … , �𝑃𝑃𝑖𝑖,𝑗𝑗��, ∑ 𝑓𝑓𝑖𝑖,𝑗𝑗𝑘𝑘𝑘𝑘 = 1, specifying the fraction 

of traffic to be routed via each path. 

Note that this definition encompasses both single and multipath routing schemes. When 

�𝑃𝑃𝑖𝑖,𝑗𝑗� > 1 with no 𝑓𝑓𝑖𝑖,𝑗𝑗𝑘𝑘 = 1, 𝑟𝑟 is said to be a multipath routing. Otherwise it is single path 

routing. 

Given traffic matrix 𝑇𝑇𝑇𝑇 and routing 𝑟𝑟, we assume the contribution of path 𝑃𝑃𝑖𝑖,𝑗𝑗𝑘𝑘  

traffic to link 𝑙𝑙 ’s up or down channel’s load under 𝑟𝑟  is 𝑡𝑡𝑡𝑡𝑖𝑖,𝑗𝑗 × 𝑓𝑓𝑖𝑖,𝑗𝑗𝑘𝑘  when the channel 

belongs to path 𝑃𝑃𝑖𝑖,𝑗𝑗𝑘𝑘 , and 0 otherwise. This is the standard linear network assumption for 

oblivious routing [76]. Hence, the load imposed on channel 𝑙𝑙𝐷𝐷, 𝐷𝐷 ∈ {𝑢𝑢𝑢𝑢,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑}, of link 𝑙𝑙 

of 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) by routing 𝑟𝑟 is 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑙𝑙𝐷𝐷, 𝑟𝑟,𝑇𝑇𝑇𝑇) = � 𝑡𝑡𝑡𝑡𝑖𝑖,𝑗𝑗 × 𝑓𝑓𝑖𝑖,𝑗𝑗𝑘𝑘

𝑖𝑖,𝑗𝑗,𝑘𝑘 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑙𝑙𝐷𝐷∈𝑃𝑃𝑖𝑖,𝑗𝑗
𝑘𝑘

; (3. 3) 

and the load imposed by routing 𝑟𝑟 on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛)’s most congested link channel, termed the 

maximum link load in [84], is 
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𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑙𝑙∈𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

�max�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑙𝑙𝑢𝑢𝑢𝑢, 𝑟𝑟,𝑇𝑇𝑇𝑇�, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑟𝑟,𝑇𝑇𝑇𝑇)��.  (3. 4) 

Similarly, given traffic matrix 𝑇𝑇𝑇𝑇 and routing 𝑟𝑟, the contribution of path 𝑃𝑃𝑖𝑖,𝑗𝑗𝑘𝑘  traffic 

to switch 𝑠𝑠’s load under 𝑟𝑟  is 𝑡𝑡𝑡𝑡𝑖𝑖,𝑗𝑗 × 𝑓𝑓𝑖𝑖,𝑗𝑗𝑘𝑘  when 𝑠𝑠  belongs to path 𝑃𝑃𝑖𝑖,𝑗𝑗𝑘𝑘 , and 0 otherwise. 

Hence, the load imposed on switch 𝑠𝑠 of 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) by routing 𝑟𝑟 is 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠, 𝑟𝑟,𝑇𝑇𝑇𝑇) = � 𝑡𝑡𝑡𝑡𝑖𝑖,𝑗𝑗 × 𝑓𝑓𝑖𝑖,𝑗𝑗𝑘𝑘

𝑖𝑖,𝑗𝑗,𝑘𝑘 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑠𝑠∈𝑃𝑃𝑖𝑖,𝑗𝑗
𝑘𝑘

; (3. 5) 

and the load imposed by routing 𝑟𝑟 on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛)’s most congested switch is 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠∈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒

{𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠, 𝑟𝑟,𝑇𝑇𝑇𝑇)}. (3. 6) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑀𝑀) is the worst-case link load incurred by 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) under routing 𝑟𝑟 

given traffic matrix 𝑇𝑇𝑇𝑇 . The min-max link-optimal routing 𝑟𝑟  for this traffic matrix, 

minimizes 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇). 

Definition 3.4 [84]. The min-max optimal (minimum worst case) link load imposed on 

𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) by traffic matrix 𝑇𝑇𝑇𝑇 is 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

{𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇)}. (3. 7) 

Similarly, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇) is the worst-case switch load incurred by 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) 

under routing 𝑟𝑟 given traffic matrix 𝑇𝑇𝑇𝑇. The min-max switch-optimal routing 𝑟𝑟 for this 

traffic matrix minimizes 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇). 

Definition 3.5. The min-max optimal (minimum worst case) switch load imposed on 

𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) by traffic matrix 𝑇𝑇𝑇𝑇 is 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

{𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇)}. (3. 8) 
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Intuitively, because a switch’s load must be at least as large as the load of any 

attached link, the min-max optimal switch load bounds the min-max optimal link load. 

Lemma 3.1. Given 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), with 𝑚𝑚 a power of 2 and 𝑛𝑛 ≥ 1, for all 𝑇𝑇𝑇𝑇, 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) ≤ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) ≤ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × 2 × �
𝑚𝑚
2
�
𝑛𝑛

.  (3. 9) 

Proof: Note first that as 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) contains 2 × �𝑚𝑚
2
�
𝑛𝑛

 processing nodes, no switch can 

have a load of more than 2 × �𝑚𝑚
2
�
𝑛𝑛

× 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) . So, 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) ≤

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × 2 × �𝑚𝑚
2
�
𝑛𝑛

. Next, fix 𝑇𝑇𝑇𝑇  and let 𝑟𝑟  denote the routing that achieves 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) . Then, by 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) ’s, 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) ’s, and 𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇𝑇𝑇) ’s 

definitions, 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇)  = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇) 

≥ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇) 

≥ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) 

≥ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇), 

  (3.10) 

where the first inequality follows from the fact that 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇) ≥

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠, 𝑟𝑟,𝑇𝑇𝑇𝑇) ≥ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇)  for the switch 𝑠𝑠  attached to the link achieving 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇), with equality when, for instance, 𝑇𝑇𝑇𝑇 specifies that traffic be sent from a 

single node to a single node. □ 

 In the next section, we derive worst-case switch load bounds for specific routing 

schemes, and in the process, significantly tighten Lemma 3.1’s upper bound. 
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3.3.3   Formal Analysis 

In this section, we derive bounds on the worst case switch load for our proposed 

schemes, and compare these bounds to those obtained for standard schemes. 

The routing schemes (and variants) to be considered include: 

1. Normal Routing, which corresponds to the single-path IPv4 table-based scheme, 

2. Dynamic NIx-Vector Routing, which is a NIx-vector routing variant that uses our 

modified BFS algorithm to select one path from the multiple available shortest 

paths, and 

3. Multipath Routing via Dynamic NIx-Vectors, which extends NIx-vector routing to 

the multipath case using the Front-Back Algorithm (introduced in Chapter 4) to 

distribute traffic across the shortest paths. 

3.3.3.1  Normal Routing 

Theorem 3.1. Given Normal Routing (𝑁𝑁𝑁𝑁) on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), with 𝑚𝑚 a power of 2 and 𝑛𝑛 ≥ 1, 

for all 𝑇𝑇𝑇𝑇, the load on any 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switch, 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, satisfies 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊𝑡𝑡(𝑁𝑁𝑁𝑁,𝑇𝑇𝑇𝑇) ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  ×  2 × �
𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

. (3. 11) 

Proof: Under Normal Routing all traffic between source nodes in different 𝑛𝑛 − 1 level sub-

fat-trees of fat-tree 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) passes through 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛)’s leftmost 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 switch. Hence 

this switch is maximally loaded by 𝑇𝑇𝑇𝑇𝑇𝑇 under which all source nodes’ traffic is directed 

towards 𝑛𝑛 − 1 level sub-fat-trees other than their own. By fat-tree Property 6, there are 

2 × �𝑚𝑚
2
�
n
 source nodes in 𝐹𝐹𝐹𝐹(𝑚𝑚, 𝑛𝑛), and by Definition 3.2, each can send no more than 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) units of traffic. Hence inequality (3.11) holds for all 𝑇𝑇𝑇𝑇, when 𝑡𝑡 = 0, 
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with equality when, for instance, 𝑇𝑇𝑇𝑇 specifies that each source node send one unit of 

traffic to every source node outside of its 𝑛𝑛 − 1 level sub-fat-tree. 

Similarly, under Normal Routing, all traffic between source nodes in a particular 

𝑛𝑛 − 𝑡𝑡 level sub-fat-tree of 𝐹𝐹𝐹𝐹(𝑚𝑚, 𝑛𝑛), 1 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, and source nodes outside of this sub-

fat-tree, passes through this sub-fat-tree’s leftmost 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0  switch (a 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡  switch of 

𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛)). Hence this switch is maximally loaded by 𝑇𝑇𝑇𝑇𝑇𝑇 under which all of its source 

nodes’ traffic is directed towards, or originates from, source nodes outside of its sub-fat-

tree. By fat-tree Property 6, there are �𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

 source nodes in each 𝑛𝑛 − 𝑡𝑡 level sub-fat-tree, 

and by Definition 3.2, each can send and receive no more than 2 × 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) units 

of traffic. Hence inequality (3.11) holds for all 𝑇𝑇𝑇𝑇, when 0 < 𝑡𝑡 ≤ 𝑛𝑛 − 1, with equality 

when, for instance, 𝑇𝑇𝑇𝑇 specifies that each source node send one unit of traffic to every 

source node outside of its 𝑛𝑛 − 𝑡𝑡 level sub-fat-tree. □ 

By Definition 3.2, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  ×  2 ×  �𝑚𝑚
2
�
𝑛𝑛

 is the largest traffic load that the 

2 × �𝑚𝑚
2
�
𝑛𝑛

 source nodes in 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) can generate, and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  ×  2 × �𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

 is 

the largest traffic load that the �𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

 source nodes in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚,𝑛𝑛 − 𝑡𝑡) can collectively 

send and receive. Accordingly, (3.11) hold for all routings 𝑟𝑟 and all traffic matrices 𝑇𝑇𝑇𝑇. 

Corollary 3.1. For all routings 𝑟𝑟 on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), with 𝑚𝑚 a power of 2 and 𝑛𝑛 ≥ 1, and for 

all 𝑇𝑇𝑇𝑇, the load on any 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switch, 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, satisfies 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊𝑡𝑡(𝑟𝑟,𝑇𝑇𝑇𝑇) ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  ×  2 × �
𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

.□ (3. 12) 

Note that since the bounds in (3.12) are tight for 𝑟𝑟 = 𝑁𝑁𝑁𝑁, 𝑁𝑁𝑁𝑁 is in fact a “worst case” 

routing. 
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3.3.3.2  Dynamic NIx-Vector Routing 

In this section, we briefly investigate the min-max link and switch load performance 

of single path Dynamic NIx-Vector Routing to establish benchmarks against which the 

performance of our proposed Multipath Dynamic NIx-Vector Routing scheme can be 

compared. We limit our analysis to 𝐹𝐹𝐹𝐹(𝑚𝑚, 2)  and 𝐹𝐹𝐹𝐹(𝑚𝑚, 3)  because optimal routing 

schemes are known for these two cases and because these fat-tree types are adequate to 

support most applications. An 𝐹𝐹𝐹𝐹(32, 3), for instance, can support 8192 processing nodes. 

The following theorem, on which our results are based, is an immediate 

consequence of Theorems 6 and 7 in [84]. 

Theorem 3.2 [84]. Given Dynamic NIx-Vector Routing (𝐷𝐷𝐷𝐷𝑉𝑉𝑉𝑉) on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), with m a 

power of 2 and 𝑛𝑛 ∈ {2, 3}, 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑇𝑇𝑇𝑇) ≤

⎩
⎨

⎧𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × ��
𝑚𝑚
2
� , if 𝑛𝑛 = 2

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) ×
𝑚𝑚
2

,        if 𝑛𝑛 = 3
. (3. 13) 

Proof: As outlined in Chapter 2, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 uses a modified BFS algorithm to dynamically 

return shortest paths between all source nodes 𝑖𝑖 and 𝑗𝑗 in 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛). It is then free to assign 

shortest paths to source-destination pairs in any desired demand oblivious fashion. 

In Theorem 6 of [84] it is shown that in the case 𝑛𝑛 = 2, it is possible to assign 

shortest paths to source-destination pairs in such a way that no link ever carries traffic to 

or from more than ��𝑚𝑚
2
� source nodes. It is also shown that in the case 𝑛𝑛 = 3 it is possible 

to assign shortest paths to source-destination pairs in such a way that no link ever carries 

traffic to or from more than 𝑚𝑚
2

 source nodes. Under these 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  assignments it is 

immediate that the maximum load experienced by fat-tree 𝐹𝐹𝐹𝐹(𝑚𝑚, 𝑛𝑛) satisfies (3.13) for 

𝑛𝑛 = 2 and 𝑛𝑛 = 3. □ 
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Theorem 3.3. Given Dynamic NIx-Vector Routing (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), with 𝑚𝑚 a power 

of 2 and 𝑛𝑛 ∈ {2, 3}, for all 𝑇𝑇𝑇𝑇, the load on any 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switch, 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, satisfies 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊𝑡𝑡(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑇𝑇𝑇𝑇) ≤

⎩
⎪
⎨

⎪
⎧𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  × min���

𝑚𝑚
2
�  , �

𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

�  ×  𝑚𝑚, if 𝑛𝑛 = 2

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  × min �
𝑚𝑚
2

 , �
𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

� ×  𝑚𝑚,         if 𝑛𝑛 = 3
. (3. 14) 

Proof: Fix 𝑇𝑇𝑇𝑇, let 𝑠𝑠 denote a switch that achieves 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑇𝑇𝑇𝑇) under 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, 

and let 𝑙𝑙0, 𝑙𝑙1, . . . , 𝑙𝑙𝑚𝑚−1  denote the links attached to its 𝑚𝑚 ports. As all traffic that enters 𝑠𝑠 

leaves 𝑠𝑠, the load on switch 𝑠𝑠 equals half the sum of the load on its links’ up and down 

channels. Hence, by 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑇𝑇𝑇𝑇)’s definition, and (3.13), 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑇𝑇𝑇𝑇) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑇𝑇𝑇𝑇) 

=
1
2
� �𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑙𝑙𝑝𝑝,𝑢𝑢𝑢𝑢,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑇𝑇𝑇𝑇� + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑙𝑙𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑇𝑇𝑇𝑇��
𝑚𝑚−1

𝑝𝑝=0

 

≤

⎩
⎪
⎨

⎪
⎧1

2
� �𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  ×  ��

𝑚𝑚
2
� ×  2� , if 𝑛𝑛 = 2

𝑚𝑚−1

𝑝𝑝=0

1
2
� �𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  ×

𝑚𝑚
2

×  2�
𝑚𝑚−1

𝑝𝑝=0

,         if 𝑛𝑛 = 3

 

=

⎩
⎨

⎧𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  ×  ��
𝑚𝑚
2
� ×  𝑚𝑚, if 𝑛𝑛 = 2

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  ×
𝑚𝑚
2

×  𝑚𝑚,         if 𝑛𝑛 = 3
. 

 (3.15) 

On the other hand, by Corollary 3.1, for 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊𝑡𝑡(𝑟𝑟,𝑇𝑇𝑇𝑇) ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  ×  2 × �
𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

. (3. 16) 

Merging (3.15) and (3.16) we obtain (3.14). □ 
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3.3.3.3  Multipath Routing via Dynamic NIx-Vectors (using all paths) 

The routing scheme Multipath Routing via Dynamic NIx-Vectors (using all paths) 

(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) works as follows: Let 𝑋𝑋 be the number of shortest paths between a source-

destination node pair (𝑖𝑖, 𝑗𝑗) , and let these 𝑋𝑋  different shortest paths be 𝑃𝑃𝑖𝑖,𝑗𝑗1 ,𝑃𝑃𝑖𝑖,𝑗𝑗2 , … ,𝑃𝑃𝑖𝑖,𝑗𝑗𝑋𝑋 . 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 uses the Front-Back Algorithm (Chapter 4), to allocate the same amount of traffic 

𝑓𝑓𝑖𝑖,𝑗𝑗1 = ⋯ = 𝑓𝑓𝑖𝑖,𝑗𝑗𝑋𝑋 = 1
𝑋𝑋

 , to each path. 

Theorem 3.4. Given Multipath Routing via Dynamic NIx-Vectors (using all paths) 

(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), with 𝑚𝑚 a power of 2 and 𝑛𝑛 ≥ 1, for all 𝑇𝑇𝑇𝑇, 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) = 𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇𝑇𝑇); (3. 17) 

and the load on any switch satisfies 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  ×  𝑚𝑚. (3. 18) 

Proof: Consider first (3.17). Our proof approach is adapted from [84]. Since, by Lemma 

3.1, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) , it suffices to show that 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇). By fat-tree Property 3, for all source nodes 𝑖𝑖 

and 𝑗𝑗  in 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) , shortest path traffic from 𝑖𝑖  to 𝑗𝑗  passes through at most �𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 link up-channels, 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1. By fat-tree Property 5, each of these channels 

carries shortest path traffic from at most �𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

 source nodes 𝑖𝑖0, 𝑖𝑖1, . . . , 𝑖𝑖
�𝑚𝑚2 �

𝑛𝑛−1−𝑡𝑡
−1

. 

Under 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  routing, traffic from each of these �𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

 nodes is uniformly 

distributed across these �𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

 links. Hence, recalling that the total traffic departing 

from source node 𝑖𝑖 under traffic matrix 𝑇𝑇𝑇𝑇 can be expressed as ∑ 𝑡𝑡𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖≠𝑗𝑗 , and that, by 
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Definition 3.2, no link’s up-channel load can exceed 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇), we have, for all 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 link up channels 𝑙𝑙, 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑙𝑙,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) ≤ �
∑ 𝑡𝑡𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖≠𝑗𝑗

�𝑚𝑚2 �
𝑛𝑛−1−𝑡𝑡

�𝑚𝑚2 �
𝑛𝑛−1−𝑡𝑡

−1

𝑝𝑝=0

 

≤ �
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)

�𝑚𝑚2 �
𝑛𝑛−1−𝑡𝑡

�𝑚𝑚2 �
𝑛𝑛−1−𝑡𝑡

−1

𝑝𝑝=0

 

= 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇). 

  (3.19) 

Since, by 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) ’s symmetry, the same arguments hold for all 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡  link down 

channels, (3.17) follows from the definition 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇). 

Consider next (3.18). Since, by Lemma 3.1, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) ≤ 𝑀𝑀𝑀𝑀𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇), 

it suffices to establish the upper bound. Fix 𝑇𝑇𝑇𝑇 , let 𝑠𝑠  denote a switch that achieves 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇)  under 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅 , and let 𝑙𝑙0, 𝑙𝑙1, . . . , 𝑙𝑙𝑚𝑚−1  denote the links 

attached to its 𝑚𝑚 ports. As all traffic that enters 𝑠𝑠 leaves 𝑠𝑠, the load on switch 𝑠𝑠 equals half 

the sum of the load on its ports’ link’s up and down channels. Hence, by 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇)’s definition, and (3.17), 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) 

=
1
2
� �𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑙𝑙𝑝𝑝,𝑢𝑢𝑢𝑢,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇� + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑙𝑙𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇��
𝑚𝑚−1

𝑝𝑝=0

 

≤
1
2
� (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  ×  2)
𝑚𝑚−1

𝑝𝑝=0

 

= 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  ×  𝑚𝑚.□ 

 (3.20) 
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As 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇)  is both lower bounded (by Lemma 3.1) and upper 

bounded (by Theorem 3.4) by 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇), the following corollary is clear. 

Corollary 3.2. Given 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), with 𝑚𝑚 a power of 2 and 𝑛𝑛 ≥ 1, for all 𝑇𝑇𝑇𝑇, 

𝑀𝑀𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇).□ (3. 21) 

Corollary 3.2 establishes that 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  is the min-max link-optimal routing for 

𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛). In fact, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is also a min-max switch-optimal routing. But showing this 

takes a bit more effort. 

To begin we note that both bounds in (3.18) are tight. To see this, consider first a 

traffic matrix 𝑇𝑇𝑇𝑇1 that specifies that a single source node send traffic to another source 

node within its smallest (1 level) sub-fat-tree. Under 𝑇𝑇𝑇𝑇1 the switch attached to these two 

nodes load equals 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  while all other switches’ loads are zero. Hence 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇1) = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇1). 

Consider next a traffic matrix 𝑇𝑇𝑇𝑇2 that specifies that each source node in 𝑛𝑛 − 1 

level sub-fat-tree 𝑋𝑋 send one unit of traffic to the node in the same position in the adjacent 

𝑛𝑛 − 1 level subtree (𝑋𝑋 + 1) mod 𝑚𝑚. As each node sends one unit of traffic they all send 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇2) . Under 𝑇𝑇𝑇𝑇2  with 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  routing, the 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇2) × 2 × �𝑚𝑚
2
�
𝑛𝑛

 

traffic generated by these 2 × �𝑚𝑚
2
�
𝑛𝑛

 nodes is uniformly distributed across the �𝑚𝑚
2
�
𝑛𝑛−1

 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 switches hence 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊0(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇2) = (𝑏𝑏𝑏𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇𝑇𝑇2) × 2 × �𝑚𝑚
2
�
𝑛𝑛

)/

�𝑚𝑚
2
�
𝑛𝑛−1

= 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇2) × 𝑚𝑚 . Similarly, under 𝑇𝑇𝑇𝑇2  with 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  routing, the 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × 2 × �𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

 up and down traffic generated by the �𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

 nodes in each 

𝑛𝑛 − 𝑡𝑡 level sub-fat-tree is uniformly distributed across �𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switches. Hence 
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𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊𝑡𝑡(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇2) = (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇2) × 2 × �𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

)/ �𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

=

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇2) × 𝑚𝑚, as was the case for the 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0  switches. Thus 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇2) = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑑𝑑(𝑇𝑇𝑇𝑇2) × 𝑚𝑚. 

The implication of having these distinct bounds is that the bounding arguments that 

established 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀’s min-max link-optimality cannot be used to establish its min-max 

switch optimality. Instead we demonstrate optimality by showing that for every 𝑇𝑇𝑇𝑇 , 

deviating from 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 can only increase a fat-tree’s maximum switch load. 

Theorem 3.5. Given 𝐹𝐹𝐹𝐹(𝑚𝑚, 𝑛𝑛), with 𝑚𝑚 a power of 2 and 𝑛𝑛 ≥ 1, for all 𝑇𝑇𝑇𝑇, 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑊𝑊(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇). (3. 22) 

Proof: Fix 𝑇𝑇𝑇𝑇  and let 𝑠𝑠  be a switch with 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) =

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇). By Definition 3.5, it suffices to show that 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟,𝑇𝑇𝑇𝑇) ≥ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅,𝑇𝑇𝑇𝑇) for all 𝑟𝑟. (3. 23) 

There are two cases. Suppose first that 𝑠𝑠 is a 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛 − 1 switch. Then since all paths 

through 𝑠𝑠 link directly to a source node, all paths are unique. So no change in 𝑟𝑟 can reduce 

𝑠𝑠’s switch load, and hence (3.23) holds. Suppose next that 𝑠𝑠 is a 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switch, 0 ≤ 𝑡𝑡 <

𝑛𝑛 − 1 , and let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚,𝑛𝑛 − 𝑡𝑡)  denote the smallest sub-fat-tree containing 𝑠𝑠 . Under 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 routing all traffic between nodes 𝑖𝑖 and 𝑗𝑗 is evenly distributed among all paths 

between 𝑖𝑖 and 𝑗𝑗, and hence by fat-trees symmetry, all 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switches, in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚, 𝑛𝑛 −

𝑡𝑡), along those paths. By superposition it follows that the aggregate traffic traversing 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚,𝑛𝑛 − 𝑡𝑡) is likewise equally distributed among all 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switches in 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚,𝑛𝑛 − 𝑡𝑡). But as this aggregate is fixed by 𝑇𝑇𝑇𝑇, any routing 𝑟𝑟 that decreases 

switch 𝑠𝑠’s load increases the load of some other 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switch in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚, 𝑛𝑛 − 𝑡𝑡). So 

once again (3.23) holds. □ 
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3.3.3.4  Multipath Routing via Dynamic NIx-Vectors (using ⌈𝑿𝑿/𝒌𝒌⌉ paths) 

Theorem 3.5 establishes the min-max optimality of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, however, 

routes over all shortest paths between nodes. When this is not possible but reduced switch 

loads are still desired, it is natural to investigate the performance gains attainable via 

multipath routing over a subset of the available paths. 

Let ⌈ ⌉  denote the next largest integer (ceiling) function. The routing scheme 

Multipath Routing via Dynamic NIx-Vectors (using ⌈𝑋𝑋/𝑘𝑘⌉ paths) (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) works as 

follows: Let 𝑋𝑋 be the number of shortest paths between a source-destination node pair (𝑖𝑖, 𝑗𝑗). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  uses the Front-Back Algorithm (Chapter 4) to allocate the same fraction of 

traffic 𝑓𝑓𝑖𝑖,𝑗𝑗1 = ⋯ = 𝑓𝑓𝑖𝑖,𝑗𝑗
⌈𝑋𝑋/𝑘𝑘⌉ = 1

⌈𝑋𝑋/𝑘𝑘⌉
  to each of a randomly selected subset 𝑃𝑃𝑖𝑖,𝑗𝑗1 ,𝑃𝑃𝑖𝑖,𝑗𝑗2 , … ,𝑃𝑃𝑖𝑖,𝑗𝑗

⌈𝑋𝑋/𝑘𝑘⌉, 

of these 𝑋𝑋 paths. When, for instance, 𝑘𝑘 = 2 and 𝑋𝑋 = 4, the algorithm uses ⌈4/2⌉ = 2 paths. 

We assume 𝑘𝑘 ≤ �𝑚𝑚
2
�
𝑛𝑛−1

, which is the maximum number of shortest paths between any two 

nodes in 𝐹𝐹𝑇𝑇(𝑚𝑚,𝑛𝑛). 

Our proposed routing scheme from Chapter 2, Dual IPv4/IPv6 Routing with Front-

Back, utilizes both IPv4 and IPv6 to set up two different paths. It can be considered as a 

special case of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 on 𝐹𝐹𝐹𝐹(4, 3), with fixed routing. 

Theorem 3.6. Given Multipath Routing via Dynamic NIx-Vectors (using ⌈𝑋𝑋/𝑘𝑘⌉ paths) 

(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) on 𝐹𝐹𝐹𝐹(𝑚𝑚, 𝑛𝑛), with 𝑚𝑚 a power of 2 and 𝑛𝑛 ≥ 1, for all 𝑇𝑇𝑇𝑇, the maximum load 

on 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 links, 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, satisfies 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝑡𝑡(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  × min �𝑘𝑘, �
𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

� ; (3. 24) 

and the maximum load on 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switches, 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, satisfies 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊𝑡𝑡(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × min �𝑘𝑘, �
𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

�  × 𝑚𝑚. (3. 25) 
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Proof: Consider first (3.24). Our proof approach is adapted from [84]. Since, by Lemma 

3.1, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝑡𝑡(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) , it suffices to establish the upper 

inequality in (3.24). By fat-tree Property 3, for all source nodes 𝑖𝑖  and 𝑗𝑗  in 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), 

shortest path traffic from 𝑖𝑖 to 𝑗𝑗 passes through at most �𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 link up-channels, 

0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1. By fat-tree Property 5, each of these channels carries shortest path traffic 

from at most �𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

 source nodes 𝑖𝑖0, 𝑖𝑖1, . . . , 𝑖𝑖
�𝑚𝑚2 �

𝑛𝑛−1−𝑡𝑡
−1

. Under 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  routing, 

traffic from each of these �𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

 nodes is uniformly distributed across ��𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

/𝑞𝑞� 

randomly selected links where 𝑞𝑞 = min �𝑘𝑘, �𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

�. In the worst case, all nodes’ traffic 

is distributed over the same ��𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

/𝑞𝑞� links. Hence, recalling that the total traffic 

departing from source node 𝑖𝑖 under traffic matrix 𝑇𝑇𝑇𝑇 can be expressed as ∑ 𝑡𝑡𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖≠𝑗𝑗 , and 

that, by Definition 3.2, no link’s up-channel load can exceed 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇), we have, for 

all 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 links’ up channels 𝑙𝑙, 

𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝑡𝑡(𝑙𝑙,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) ≤ �
∑ 𝑡𝑡𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖≠𝑗𝑗

��𝑚𝑚2 �
𝑛𝑛−1−𝑡𝑡

/𝑞𝑞�

�𝑚𝑚2 �
𝑛𝑛−1−𝑡𝑡

−1

𝑝𝑝=0

 

≤ �
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)

�𝑚𝑚2 �
𝑛𝑛−1−𝑡𝑡

/𝑞𝑞

�𝑚𝑚2 �
𝑛𝑛−1−𝑡𝑡

−1

𝑝𝑝=0

 

= 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  ×  𝑞𝑞 

= 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  × min �𝑘𝑘, �
𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

�. 

  (3.26) 
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Since, by 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) ’s symmetry, the same arguments hold for all 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡  link down 

channels, (3.24) follows from the definition 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝑡𝑡(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇). 

Consider next (3.25). Since, by Lemma 3.1, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊𝑡𝑡(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇), 

it again suffices to establish the upper bound. Fix 𝑇𝑇𝑇𝑇, let 𝑠𝑠 denote a switch that achieves 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊𝑡𝑡(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇)  under 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 , and let 𝑙𝑙0, 𝑙𝑙1, . . . , 𝑙𝑙𝑚𝑚−1  denote the links 

attached to its 𝑚𝑚 ports. As all traffic that enters 𝑠𝑠 leaves 𝑠𝑠, the load on switch 𝑠𝑠 equals half 

the sum of the load on its ports’ link’s up and down channels. Hence, by 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊𝑡𝑡(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇)’s definition, and (3.24), 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊𝑡𝑡(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑤𝑤𝑡𝑡(𝑠𝑠,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) 

=
1
2
� �𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝑡𝑡�𝑙𝑙𝑝𝑝,𝑢𝑢𝑢𝑢,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇� + 𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝑡𝑡�𝑙𝑙𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇��
𝑚𝑚−1

𝑝𝑝=0

 

≤
1
2
� (2 × 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × min �𝑘𝑘, �

𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

�)
𝑚𝑚−1

𝑝𝑝=0

 

= 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × min �𝑘𝑘, �
𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

�×  𝑚𝑚.□ 

 (3.27) 

Like the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇)  bounds given in Theorem 3.4, the 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) bounds in Theorem 3.6 are tight. 

Paralleling Theorem 3.4’s 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇)  bound’s tightness 

arguments suffices to show that Theorem 3.6’s 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) bounds are 

also tight. By paralleling Theorem 3.5’s optimality arguments one can also show that 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀’s switch load is min-max optimal among all ⌈𝑋𝑋/𝑘𝑘⌉-path policies. That is, in the 

absence of knowledge of 𝑇𝑇𝑇𝑇, unequally weighting the traffic assigned to the available 

paths is suboptimal. 
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3.3.3.5  Summary 

In this section, we derived worst case switch load bounds for four fat-tree routing 

schemes. These bounds are summarized in Table 3.1. 

 

Table 3.1: Lower and upper bounds for the maximum switch 
load under different routing schemes. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀( ∙ ,𝑇𝑇𝑇𝑇) Lower Bound Upper Bound 

𝑁𝑁𝑁𝑁 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  ×  2 × �
𝑚𝑚
2
�
𝑛𝑛

 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) 
  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  ×  ��𝑚𝑚

2
�  ×  𝑚𝑚, if 𝑛𝑛 = 2 

  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  ×  𝑚𝑚
2

 ×  𝑚𝑚,     if 𝑛𝑛 = 3   

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  ×  𝑘𝑘 ×  𝑚𝑚 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  ×  𝑚𝑚 
 
 

Table 3.2: Comparison of baseload normalized maximum switch 
loads under different routing schemes. 

                                         Fat-tree size 
                     [max # of shortest 

                                                paths 𝑋𝑋] 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(∙,𝑇𝑇𝑇𝑇)
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) ≤ 

𝐹𝐹𝑇𝑇(2, 2) 
[ 1 ] 

𝐹𝐹𝑇𝑇(4, 2) 
[ 2 ] 

𝐹𝐹𝐹𝐹(4, 3) 
[ 4 ] 

𝐹𝐹𝐹𝐹(8, 3) 
[ 16 ] 

𝑁𝑁𝑁𝑁 2 8 16 128 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 2 8 8 32 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (�1
2
𝑋𝑋� paths) - 8 8 16 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (�3
4
𝑋𝑋� paths) - - 5.33 10.67 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (all paths) 2 4 4 8 
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Clearly, compared to Normal Routing (𝑁𝑁𝑁𝑁), the proposed schemes – Dynamic NIx-

Vector Routing (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ), Multipath Dynamic NIx-Vector Routing (using all paths) 

(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀), and Multipath Dynamic NIx-Vector Routing (using ⌈𝑋𝑋/𝑘𝑘⌉ paths) (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀), 

can reduce the worst case switch load observed in fat-trees. 

To illustrate we compute these bounds, for the four policies, for the fat-trees 

pictured in Figures 3.2-3.4 and 𝐹𝐹𝐹𝐹(8, 3) (not pictured). The results are summarized in 

Table 3.2. 

 
 

 

Figure 3.2: A simple fat-tree FT(2, 2) with 2 nodes and 3 switches. 

 
 
 

 

Figure 3.3: An example fat-tree FT(4, 2) with 8 nodes and 6 switches. 
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Figure 3.4: An example fat-tree FT(4, 3) with 16 nodes and 20 switches. 

 
 

3.4   Conclusions 

In this chapter, we established a relationship between the proposed multipath 

routing schemes and the avoidance of TCP Incast’s onset. First, we noted, using Kulkarni’s 

model of synchronized, many-to-one TCP flows, that the onset of Incast is highly 

correlated to flow packet loss, and consequently, that strategies that reduce packet loss, 

such as increasing switch buffer size, delay the onset of Incast. Next, we observed, from 

well-known results on switch buffer sizing, that the loss rate of TCP flows can be reduced 

by reducing switch loads. Finally, we defined key fat-tree routing terminology, and showed 

by formal analysis that, given 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), for all traffic matrix 𝑇𝑇𝑇𝑇, the worst-case loads – 

the loads most responsible for TCP Incast – are reduced by our proposed routing schemes. 
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CHAPTER 4  

THE FRONT-BACK ALGORITHM AND 

ITS PERFORMANCE EVALUATION 

In this chapter, we investigate a novel “front-back” approach to minimizing the 

packet reordering introduced by multipath routing. We follow this with a brief discussion 

of integration issues, and a performance comparison with existing algorithms. We conclude 

with a discussion of the algorithm’s extension to N-paths.  

4.1   Reordering Avoidance: The Front-Back Algorithm 

A key problem, faced by all approaches to routing packets over multiple paths, is 

packet reordering. Although in data centers shortest path latencies are typically small and 

uniform due to the data center’s regular structure, flow packets taking different paths may 

still arrive out of order due to differences in the queueing delays encountered in switches 

along their paths. Returning packets to their original order consumes time, buffer, and 

computing resources. It may also drastically reduce throughput if it persists as TCP, which 

cannot distinguish between lost and reordered packets, reduces its congestion window, and 

begins unnecessarily retransmitting packets that it perceives have been lost [85, 86]. 

Our approach to mitigating reordering’s effects is two pronged: 

1. It opens separate TCP connections on each path to decouple the paths’ transport 

layers, and 

2. It distributes data across the paths in a manner that ensures that the work that must 

be done to return the received packets to their original order is minimized.  
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The approach assumes that the receiving node maintains a buffer of the same size 

as the block data to be transmitted, and that the data is barrier-synchronized, an assumption 

consistent with typical data center traffic. As the case in which only two paths are available 

is significant in its own right, for simplicity we will explain our Front-Back Algorithm’s 

operation in this case first. The N-paths (N > 2) extension is provided in Section 4.4. 

The 2-path Front-Back Algorithm (𝐹𝐹𝐹𝐹2) works as follows:  

Step 1:  Open separate TCP connections for Path 1 and Path 2. 

Step 2:  Simultaneously begin data transfer from the front of the data block on Path 1 and 

the back of the data block on Path 2. 

Step 3:  Complete transfer when the transfer streams “meet” in the middle of the block. 

  
 
 Data block 

 
 
 Next segment pointers at the beginning of transfer 

 
 
 Next segment pointers at the end of transfer 

 

Figure 4.1: An illustration of the 2-path Front-Back Algorithm’s operation. 

 
 

The algorithm’s operation is illustrated in Figure 4.1. Let the first bar represent the 

block data to be transferred. As the second bar depicts, when transfer begins, data transfer 

on Path 1 and data transfer on Path 2 begin simultaneously from the front and back of the 

data block, proceeding forward and backward, respectively. As depicted on the third bar, 

transfer completes when the two transfers “meet” somewhere in the middle of the block. 
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As Figure 4.1 highlights, at termination, the 2-path Front-Back Algorithm has 

partitioned the data block into two sub data blocks, one containing those segments that 

were transferred via Path 1, and another containing those segments that were transferred 

via Path 2. If the path conditions – for instance, the bottleneck capacities and end-to-end 

delays of the paths – were to change, so could the partition. The same can be said for all 

N-path partitioning algorithms 𝑝𝑝 for mapping data block segments to the N paths. 

How should we judge the performance of these algorithms? We argue that as the 

receiving application is assumed to have a buffer in which to reorder the block data arriving 

from the N-paths the appropriate measures are finish time – the time at which the 

reassembly buffer fills, and disorder – measured by the amount of effort the application 

must exert to fill the buffer. 

Naturally, finish times are highly dependent on channel conditions. Nonetheless, a 

poor path partition, say choosing to send all block data via only the slowest available path, 

will affect it. Disorder seems easier to measure. The receiving application cares little how 

the reassembly buffer fills so long as it fills in the expected order. We measure disorder – 

effectively, deviations from the expected order – by counting the number of times the 

reassembly buffer’s N-path pointers must “jump” from one position in the buffer to another 

to complete reassembly of the data received from the N paths given path conditions 𝑝𝑝𝑝𝑝. We 

term these jumps, context switches, and denote them by 𝑞𝑞(𝑝𝑝,𝑝𝑝𝑝𝑝). 

 In the best case, no context switches are required, as data arrives in the expected 

order, and the pointers simply increment from their initial values until the buffer fills. In 

the worst case, the context switches after every segment arrives. This trivially occurs in the 

2-path case, for instance, when under ideal path conditions, the partitioning algorithm sends 
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all even indexed data segments on one channel, and all odd indexed data segments on the 

other. Then, upon receipt of each segment, each pointer must jump to the next even or odd 

buffer location before writing the received segment.  

Let 𝑃𝑃(𝑝𝑝,𝑝𝑝𝑝𝑝) denote the partition of a data block produced by an N-path partitioning 

algorithm 𝑝𝑝 under path conditions 𝑝𝑝𝑝𝑝. Then we have the following, simple but useful lemma. 

Lemma 4.1. Independent of the path conditions 𝑝𝑝𝑝𝑝 , the number of context switches 

𝑞𝑞(𝑝𝑝, 𝑝𝑝𝑝𝑝)  required to fill the reassembly buffer given a data block partition 𝑃𝑃(𝑝𝑝,𝑝𝑝𝑐𝑐) 

produced by a N-path algorithm 𝑝𝑝 is 𝑞𝑞(𝑝𝑝, 𝑝𝑝𝑝𝑝) = |𝑃𝑃(𝑝𝑝,𝑝𝑝𝑝𝑝)| –𝑁𝑁. 

Proof: Writing data in |𝑃𝑃(𝑝𝑝,𝑝𝑝𝑝𝑝)| distinct buffer locations using N distinct pointers requires 

|𝑃𝑃(𝑝𝑝,𝑝𝑝𝑝𝑝)| –𝑁𝑁 pointer jumps. □ 

Lemma 4.2. Independent of the path conditions 𝑝𝑝𝑝𝑝, 𝑞𝑞(𝐹𝐹𝐹𝐹2,𝑝𝑝𝑝𝑝) = 0. 

Proof: By construction, |𝑃𝑃(𝐹𝐹𝐹𝐹2,𝑝𝑝𝑝𝑝)| = 2, hence by Lemma 4.1, 𝑞𝑞(𝐹𝐹𝐹𝐹2,𝑝𝑝𝑝𝑝) = 0. □ 

Theorem 4.1. With respect to both minimizing finish time, and minimizing packet disorder 

(as measured by context switches), 𝐹𝐹𝐹𝐹2 is an optimal 2-path partitioning algorithm.  

Proof: Consider first, the finishing time. By construction, if at any instant, one or more 

paths are able to deliver a segment to the application’s reassembly buffer, under 𝐹𝐹𝐹𝐹2 they 

deliver a new segment because, under 𝐹𝐹𝐹𝐹2, the forward and backward paths’ segment 

sequences don’t overlap until all segments have been sent. Hence, 𝐹𝐹𝐹𝐹2’s finishing time is 

at least as early as that of any other algorithm. Consider next, the disorder. As 

𝑞𝑞(𝐹𝐹𝐹𝐹2,𝑝𝑝𝑝𝑝) = 0 by Lemma 4.2, 𝑞𝑞(𝐹𝐹𝐹𝐹2,𝑝𝑝𝑝𝑝) ≤ 𝑞𝑞(𝑝𝑝,𝑝𝑝𝑝𝑝) for all 𝑝𝑝. The result follows. □ 

4.2   Integration with Multipath Routing 

Integration of our Front-Back Algorithm with Multipath Dynamic NIx-Vector 

Routing and Dual IPv4/IPv6 Routing is not difficult. For Multipath Dynamic NIx-Vector 
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Routing (using ⌈𝑋𝑋/𝑘𝑘⌉ paths), the ⌈𝑋𝑋/𝑘𝑘⌉ paths are randomly selected from the multiple 

shortest paths discovered by BFS for each source-destination pair. For Dual IPv4/IPv6 

Routing, we apply the Front-Back Algorithm by letting the “sending from front of file” part 

use IPv4 and “sending back from end of file” part use IPv6. As illustrated in Figure 4.2, 

the front-back functionality could be implemented as session layer between the application 

and transport layers. This session layer would handle block partitioning and reassembly, 

and keep count of the total number of segments transferred and successfully received on 

all paths to ensure timely termination of all TCP connections. 

 
 

 

Figure 4.2: Front-Back Algorithm architecture. 
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4.3   Comparison with Existing Algorithms 

In this section, we contrast the performance of our Front-Back Algorithm to that of 

other approaches to combating multipath reordering. Existing schemes fall roughly into 

three categories: (1) those that attempt to avoid the problem by ensuring that most packets 

from the same flow follow the same path, (2) those that attempt to manage it by 

coordinating path assignment with path characteristics, and (3) those that attempt to 

overcome it by opening a separate TCP flow for each path and then more carefully 

assigning segments to paths. 

Examples of schemes in the first category include: ECMP [31], which forces all 

packets from the same TCP flow to follow the same path and FLARE [87], which attempts 

to direct all bursts of packets (flowlets) from the same TCP flow to the same path. While 

constraining flows to specific paths indeed reduces multipath reordering, these approaches 

all have the downside of limiting switches’ abilities to balance load to the granularity of flows. 

Examples of schemes in the second category include: PATTHEL [88], which 

manages the multipath in the session layer, and Multi-Path TCP [89], which attempts to 

aggregate the available paths into a single TCP channel. Although these schemes typically 

do a good job of load balancing, because they balance loads packet-by-packet, they can 

induce a high degree of packet reordering. 

Schemes in the third category, tend to view multipath reordering as a file 

partitioning problem. History-based TCP [90], partitions data blocks to be transferred into 

sub-blocks proportional to each path’s rate and then transfers the blocks on these paths. 

When rates fluctuate, it performs poorly because the paths’ transfers no longer finish 

concurrently, forcing the faster paths to idle, or “context switch” to another path’s block. 

Arrival-time matching load balancing [91] attempts to fix the problem by maintaining 
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running estimates of each path’s delay, and adopting a “least delay path” selection rule. 

This scheme fares poorly in instances where path delays change rapidly. Finally, Dynamic 

TCP [90] attempts to avoid the adaptation problem completely by adopting a “last idle path” 

selection rule and keeping the transferred sub-data blocks’ size small. This limits the 

amount of disorder, but generates large overheads due to the large number of block requests 

needed to keep the paths busy. 

Our Front-Back Algorithm belongs to this third category, but its approach to the 

reordering problem is different than those of the other category 3 approaches. Whereas the 

other policies attempt to limit reordering by partitioning the data block to be sent to match 

the path characteristics, e.g., partitioning data into blocks proportional to the paths’ rates 

[90], or partitioning data to equalize the path delays it experiences [91], our algorithm aims 

to partition data to minimize the receiver’s reassembly effort as measured by context 

switches. The following example highlights the potential dangers of partitioning to match 

path characteristics as opposed to partitioning to minimize reassembly effort.  

Example 1: 200000 segments of data are to be transferred over two paths. Based on the 

available estimates, the sending node believes that the path throughputs are identical with 

rate = 10 segment/s. 

 Two partition algorithms are considered for assigning segments to paths, Divide2 

and 2-path Front-Back. In each round Divide2 assigns segments to the paths in proportion 

to the paths’ estimated throughputs. When a path completes its assigned segments, Divide2 

splits the unfinished portion of the other path’s assigned segments between the two paths. 

As such it can be viewed as an adaptive 2-path version of the history-based TCP parallel 

access algorithm in [90]. In each round, Front-Back simply assigns segments front-to-back, 

to one path, and back to front, to the other. 
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Figure 4.3: Packet Disorder and Transfer Finish Time as functions of 
throughput estimation error for Front-Back and Divide2. 
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Figure 4.4: Packet Disorder as a function of 
data size for Front-Back and Divide2. 

 
 

Algorithm performance is evaluated by two metrics: Packet Disorder, and Transfer 

Finish Time. As outlined in Section 4.1, Packet Disorder is measured by counting the 

number of context switches (reassembly buffer pointer “jumps”) required to reassemble 

the received segments, the more work required, the more disordered the segments. Transfer 

Finish Time is the time at which all 200000 segments have been ordered and delivered to 

the application.  

Plots of the two algorithms’ Packet Disorder and Transfer Finish Times, versus the 

percentage error of the algorithms’ estimates of Path 2’s throughput relative to Path 1’s 

throughput, are shown in Figure 4.3. The plots not only demonstrate – consistent with 

Theorem 4.1 – the superiority of the Front-Back Algorithm with respect to these two 
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measures, but highlight the danger of relying on channel estimates to ensure in-order 

delivery of flow segments traversing multiple paths. Clearly, Divide2’s Packet Disorder 

and Transfer Finish Time are quite sensitive to quality of its channel estimates. As 

illustrated in Figure 4.4, which plots Packet Disorder as a function of the data transferred, 

given that the algorithms’ estimates of Path 2’s throughput relative to Path 1’s throughput 

have a 50% error, this sensitivity only grows as the amount of data to be transferred grows. 

4.4   Further Development – Generalization to N-paths 

4.4.1   How the Generalization Works 

In this section we investigate the extension of the Front-Back Algorithm to N paths 

(N > 2). The N-path Front-Back Algorithm (𝐹𝐹𝐹𝐹𝐹𝐹) works as follows: 

1. Form pairs (groups) of paths such that the largest difference among the groups’ net 

throughputs is smallest. When N is odd, one group will contain a single path. 

2. Partition the data block to be transferred proportional to the groups’ net throughputs. 

3. For the partitions obtained, run the Front-Back Algorithm on each in parallel. When 

N is odd, the partition with one assigned path transfers data normally. 

4. When a group finishes transferring its partition’s data, merge it with the group with 

the largest unfinished partition, repartition the merged group’s unsent data among 

the merged group’s paths using the process outlined in steps 1 and 2, and run the 

Front-Back Algorithm on the new groups’ partitions.  

5. Repeat this process until data transfer is complete. 

The algorithm’s operation in the case of four paths is illustrated in Figure 4.5. 

Assume that we have four paths with throughputs 3, 4, 6 and 7, respectively. Let the first 
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bar represent the block data to be transferred. As the second bar depicts, we form path pairs 

[1, 4] and [2, 3], and partition the file by making the first 1/2 Partition A, and the rest Partition 

B. As the third bar depicts, we run the Front-Back Algorithm in partitions A and B in parallel. 

Assume that Path 1 experiences congestion so that Partition B finishes first. At this point, 

we repartition the remainder of Partition A among all paths and continue. To do the splitting, 

we form pairs [1, 3], [2, 4] (instead of [1, 2], [3, 4]) so that the largest difference between 

pairs’ throughputs is smallest. Data transfer then continues as shown in the fourth bar. This 

process repeats as necessary, until data transfer is complete. 

 
 
 Data block 

 
 
 Initial partitioning 

 
 
 Next segment pointers at the beginning of transfer 

 
 
 Paths [2, 3] split the remainder of partition A 

 

Figure 4.5: An illustration of the N-path Front-Back Algorithm’s operation. 

 
 

We conjecture that Theorem 4.1, which we proved for the 2-path Front-Back 

Algorithm, also holds for N-paths. 

Conjecture 4.1. With respect to both minimizing finish time, and minimizing packet 

disorder (as measured by context switches), 𝐹𝐹𝐹𝐹𝐹𝐹  is an optimal N-path partitioning 

algorithm. □ 
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The intuition underlying this conjecture goes as follows: The N-path Front-Back 

Algorithm starts by forming pairs (groups) of paths such that largest difference among the 

net throughputs of all path groups is smallest. When N is odd one group contains only one 

path. Then it partitions the data in proportion to these pair group throughputs. These two 

steps minimize the probability that any partition will be emptied early, thereby minimizing 

the expected number of context switches. Data is then transferred simultaneously within 

all partitions, using the 2-path Front-Back Algorithm which, by Theorem 4.1 minimizes 

both the packet disorder (as measured by context switches) and finish time. 

4.4.2   Comparison with Existing Algorithms 

In this section we compare the Packet Disorder (as measured by context switches) 

of the 4-path Front-Back Algorithm and Divide4. Divide4 is a 4-path version of the Divide2 

algorithm described in Section 4.3. 

Example 2: 200000 segments of data are to be transferred over four paths. Based on the 

available estimates, the sending node believes that all paths throughputs are identical with 

rate = 10 segment/s. 

 Two partition algorithms are considered for assigning segments to paths, Divide4 

and 4-path Front-Back. In each round Divide4 assigns segments to the paths in proportion 

to the paths’ estimated throughputs. When a path completes its assigned segments, Divide4 

splits the largest unfinished portion of the other paths’ assigned segments with the 

unfinished portion’s path. As such it can be viewed as an adaptive 4-path version of the 

history-based TCP parallel access algorithm in [90]. 
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(a) 

 
 

 
(b) 

Figure 4.6: Packet Disorder as a function of (a) throughput 
estimation error and (b) data size for Front-Back and Divide4. 
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Algorithm performance is evaluated by the metric of Packet Disorder. Once again, 

Packet Disorder is measured by counting the number of context switches (reassembly 

buffer pointer “jumps”) required to reassemble the received segments, the more work 

required, the more disordered the segments. 

Figure 4.6 (a) plots the two algorithms’ Packet Disorder versus the percentage error 

of the algorithms’ estimates of Path 1’s throughput relative to the other paths’ throughputs. 

Figure 4.6 (b) plots the two algorithms’ Packet Disorder as a function of the data 

transferred, given that the algorithms’ estimates of Path 1’s throughput relative to the other 

paths’ throughputs have a 50% error. These plots, once again, highlight the superiority of 

the Front-Back Algorithm and the danger of relying on channel estimates to ensure in-order 

delivery of flow segments traversing multiple paths. 

4.5   Conclusions 

In this chapter, we investigated a novel “front-back” approach to minimizing the 

packet reordering introduced by multipath routing. We established the optimality of an 

algorithm implementing our front-back approach for 2 paths with respect to the 

minimization of packet disorder (as measured by context switches) and finish time, and 

then briefly discussed how this Front-Back Algorithm could be integrated into existing 

protocols. The Front-Back Algorithm’s performance was then contrasted to other proposed 

algorithms for combating multipath reordering, and examples highlighting its advantages 

with respect to minimizing packet disorder and transfer finish time, were presented. We 

concluded the chapter with a discussion of the Front-Back Algorithm’s N-path extension 

(N > 2) and examples illustrating the extension’s potential advantages. 
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CHAPTER 5  

PERFORMANCE ANALYSIS 

We begin this chapter with an analysis of the proposed routing schemes. We focus 

on their worst-case loading of certain network resources – expressed as oblivious 

performance ratios (OPRs). We then explore typical Incast traffic patterns in data center 

networks, and describe a novel method of traffic matrix decomposition to help visually 

illustrate and classify traffic patterns. Potential benefits of our schemes are assessed 

through ns-3 simulations on fat-trees under a variety of traffic conditions. Results indicate 

that over a variety of experimental conditions, the proposed schemes reduce the incidence 

of TCP Incast compared to standard routing schemes. 

5.1   The Oblivious Performance Ratio (OPR) 

5.1.1   Definitions of the OPR 

In Chapter 3, we defined key fat-tree routing terminology for 𝐹𝐹𝐹𝐹(𝑚𝑚, 𝑛𝑛). In this 

section, we extend [84]’s approach to assessing worst case link loads – formally defined as 

oblivious performance ratios (OPR) – to that of worst case switch loads. 

We begin by reviewing definitions of performance ratios from [84]. Given traffic 

matrix 𝑇𝑇𝑇𝑇 and routing 𝑟𝑟, the performance ratio (link) measures how far 𝑟𝑟 is from being 

optimal on 𝑇𝑇𝑇𝑇, with respect to link load. It is defined as the maximum link load of 𝑟𝑟 

divided by the min-max optimal link load on 𝑇𝑇𝑇𝑇 [92]: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑟𝑟,𝑇𝑇𝑇𝑇) =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇)
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) . (5. 1) 
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Intuitively, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑟𝑟,𝑇𝑇𝑇𝑇) ≥ 1. It equals 1 if and only if the routing 𝑟𝑟 achieves the min-

max optimal link load on 𝑇𝑇𝑇𝑇. 

Definition 5.1 [84]. Given routing 𝑟𝑟 , the maximum performance ratio (link) over all 

possible traffic matrices is defined as the oblivious performance ratio (link) [92]: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑟𝑟) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇

{𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑟𝑟,𝑇𝑇𝑇𝑇)}. (5. 2) 

Similarly, given traffic matrix 𝑇𝑇𝑇𝑇 and routing 𝑟𝑟, the performance ratio (switch) 

measures how far 𝑟𝑟 is from being optimal on 𝑇𝑇𝑇𝑇, with respect to switch load. It is defined 

as the maximum switch load of 𝑟𝑟 divided by the min-max optimal switch load on 𝑇𝑇𝑇𝑇: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑟𝑟,𝑇𝑇𝑇𝑇) =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇)
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) . (5. 3) 

Intuitively, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑟𝑟,𝑇𝑇𝑇𝑇) ≥ 1. It equals 1 if and only if the routing 𝑟𝑟 achieves the min-

max optimal switch load on 𝑇𝑇𝑇𝑇. 

Definition 5.2. Given routing 𝑟𝑟, the maximum performance ratio (switch) over all possible 

traffic matrices is defined as the oblivious performance ratio (switch): 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑟𝑟) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇

{𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑟𝑟,𝑇𝑇𝑇𝑇)}. (5. 4) 

A routing 𝑟𝑟  that achieves the min-max optimal switch load over all 𝑇𝑇𝑇𝑇 , i.e. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑟𝑟) = 1, is an optimal routing scheme for the network. 

Next, we extend the definition of oblivious performance ratio (switch) to different 

levels of switches in the fat-tree network. 

Definition 5.3. Given routing 𝑟𝑟 on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), with 𝑚𝑚 a power of 2 and 𝑛𝑛 ≥ 1, for all 𝑇𝑇𝑇𝑇, 

the oblivious performance ratio of 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switches, 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, is defined as 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡(𝑟𝑟) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇

�
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡(𝑟𝑟,𝑇𝑇𝑇𝑇)
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑇𝑇𝑇𝑇) � . (5. 5) 

By construction, traffic load on the “edge” switches (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛 − 1) of 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) is not 

affected by the routing scheme, Therefore, this ratio is always 1: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛−1(𝑟𝑟) = 1 for all 𝑟𝑟. (5. 6) 

5.1.2   Analysis on the OPR 

 We now analyze the oblivious performance ratios of different routing schemes. 

Consider first Multipath Routing via Dynamic NIx-Vectors (using all paths) (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀). In 

Corollary 3.2 and Theorem 3.5, we showed that given 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), for all traffic matrices 

𝑇𝑇𝑇𝑇 , 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇)  and 𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) =

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇). It follows from the definition of oblivious performance ratio that: 

Theorem 5.1. Given Multipath Routing via Dynamic NIx-Vectors (using all paths) 

(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), with 𝑚𝑚 a power of 2 and 𝑛𝑛 ≥ 1, for all 𝑇𝑇𝑇𝑇, 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) = 1.□ (5. 7) 

Similarly, in other theorems and corollaries from Chapter 3, we derived bounds for 

Normal Routing, Dynamic NIx-Vector Routing and Multipath Routing via Dynamic NIx-

Vectors (using ⌈𝑋𝑋/𝑘𝑘⌉ paths), respectively. In addition, we showed that those bounds are 

tight. Thus, from the definitions of oblivious performance ratios, we have: 

Theorem 5.2. Given Normal Routing (𝑁𝑁𝑁𝑁) on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), with 𝑚𝑚 a power of 2 and 𝑛𝑛 ≥ 1, 

for all 𝑇𝑇𝑇𝑇, the oblivious performance ratio of 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switches, 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, satisfies 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑊𝑊𝑡𝑡(𝑁𝑁𝑁𝑁) = �
𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

.□ (5. 8) 
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Theorem 5.3. Given Dynamic NIx-Vector Routing (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), with 𝑚𝑚 a power 

of 2 and 𝑛𝑛 ≥ 1, for all 𝑇𝑇𝑇𝑇, the oblivious performance ratio (link) satisfies 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) =

⎩
⎨

⎧��
𝑚𝑚
2
� , if 𝑛𝑛 = 2

𝑚𝑚
2

,                if 𝑛𝑛 = 3
; (5. 9) 

and the oblivious performance ratio of 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switches, 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, satisfies 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑊𝑊𝑡𝑡(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) =

⎩
⎪
⎨

⎪
⎧min ���

𝑚𝑚
2
�  , �

𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

� , if 𝑛𝑛 = 2

min �
𝑚𝑚
2

 , �
𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

� ,                 if 𝑛𝑛 = 3
.□ (5. 10) 

 
 

 

Figure 5.1: Comparison of the oblivious performance ratios (switch) on FT(m, 3), 
for routing schemes MDNVR, MDNVRk (k=2 and 4), DNVR and NR. 
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Theorem 5.4. Given Multipath Routing via Dynamic NIx-Vectors (using ⌈𝑋𝑋/𝑘𝑘⌉ paths) 

(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) on 𝐹𝐹𝐹𝐹(𝑚𝑚, 𝑛𝑛) , with 𝑚𝑚  a power of 2 and 𝑛𝑛 ≥ 1 , for all 𝑇𝑇𝑇𝑇 , the oblivious 

performance ratio of 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 links, 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, satisfies 

𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝑡𝑡(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) = min �𝑘𝑘, �
𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

� ; (5. 11) 

and the oblivious performance ratio of 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switches, 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, satisfies 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑊𝑊𝑡𝑡(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) = min �𝑘𝑘, �
𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

� .□ (5. 12) 

In Figure 5.1, we plot and compare the oblivious performance ratios for m-port 3-

trees 𝐹𝐹𝐹𝐹(𝑚𝑚, 3) , versus 𝑚𝑚 , for routing schemes 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 , 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝑘𝑘 = 2 𝑎𝑎𝑎𝑎𝑎𝑎 4) , 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  and 𝑁𝑁𝑁𝑁 . From this figure, we can clearly see the advantages of our proposed 

schemes. When 𝑚𝑚 = 8 , for instance, simply distributing traffic across 2 paths using 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝑘𝑘 = 4) yields a four-fold reduction in the worst-case switch load compared to 

Normal Routing, thereby reducing the likelihood of Incast. 

5.2   Traffic Patterns and Analysis 

In this section, we explore typical traffic patterns in data center networks related to 

TCP Incast, and identify key traffic patterns for comparing routing schemes’ performance. 

5.2.1   Typical Incast Traffic Patterns 

In a typical “barrier-synchronized request workload” Incast pattern, the client sends 

simultaneous requests to multiple servers, which then send back responses immediately. A 

distinguishing feature of this type of workload is that the client must wait for all servers’ 

responses to arrive before sending a new batch of requests. Additionally, to meet certain 
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deadlines, there are typically very tight time constraints, within each “batch”, for receipt of 

the servers’ responses. Consequently, servers’ responses, within a single batch, are often 

almost simultaneous, and thus the traffic can be highly synchronized. Should this intense, 

synchronized traffic overflow one or more network switch buffers, enough servers may 

time out to initiate Incast. 

For example: Suppose that each client sends requests to N servers simultaneously, 

and that the workload is barrier-synchronized. Suppose additionally, that there are 100 

batches of such requests, and that whenever a server receives a request, it responds with 

𝐾𝐾 𝑀𝑀𝑀𝑀 of data. The data transferred in each batch is then 𝐾𝐾 × 𝑁𝑁 and, for all batches, the 

total amount of data transferred is 100 × 𝐾𝐾 × 𝑁𝑁 𝑀𝑀𝑀𝑀. 

 
 

 

Figure 5.2:  A typical TCP Incast network setting from [93], with one client 
requesting data from multiple servers through synchronized reads. 
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Figure 5.2, from Zhang and Ansari [93], illustrates a typical network setting under 

which Incast could occur. They summarize the conditions favorable to the onset of TCP 

Incast as being: 

1. high-bandwidth, low-latency links connected by switches with limited buffers; 

2. parallel barrier-synchronized requests from clients; 

3. servers returning a fragment of data block for each request. 

Examples of previously studied Incast traffic patterns include, from: 

(1) “ICTCP: Incast Congestion Control for TCP in Data-Center Networks” [21]: 

• Traffic pattern: barrier-synchronized many-to-one 

• Link characteristics: 1 Gbps with 100 µs round-trip delay 

• Server request unit (SRU) size: 64 KB, 128 KB or 256 KB 

• Switch buffer size: 85 KB per port 

• Number of senders in parallel: 1 - 46 

• Number of experimental rounds: 100 

(2) “Preventing TCP Incast Throughput Collapse at the Initiation, Continuation  

and Termination” [94]: 

• Traffic pattern: barrier-synchronized many-to-one 

• Link characteristics: 1 Gbps with 100 µs round trip delay 

• Server request unit (SRU) size: 10 KB or 100 KB 

• Switch buffer size: 128 KB per port 

• Number of senders in parallel: 1 – 100 

• Number of experimental rounds: 100 
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(3) “Fast and Cautious: Leveraging Multi-path Diversity for Transport Loss Recovery 

in Data Centers” [58]: 

• Link characteristics: 1 Gbps with ~280 µs round trip delay 

• SRU size: smaller than 100 KB for latency sensitive queries, and larger than 

100 KB for background requests 

• Switch buffer size: 128 KB per port 

• Number of senders in parallel: 5 

• Number of experimental rounds: 10 

5.2.2   Worst Case Patterns 

In the previous section, we briefly surveyed the characteristics of several traffic 

patterns capable of inducing Incast. These “barrier-synchronized many-to-one” request 

patterns are important in practice, but for the purpose of evaluating routing schemes’ 

effects on switch loading, simpler traffic patterns suffice. We identify a few of these 

simpler patterns in this section. 

We begin by observing that for our purposes – and in practice, given that Incast is 

worst-case phenomenon triggered by extreme switch loading – traffic patterns that induce 

the same maximum switch loads can be viewed as equivalent. Formally we say that traffic 

patterns are equivalent patterns for a given routing r if they induce the same baseload 

normalized maximum switch load 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇)
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) . Two classes of equivalent patterns are 

of particular interest. 

Worst-case patterns are those that, for a given routing 𝑟𝑟 , induce the largest 

baseload normalized maximum switch load  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇)
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) . 
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Best-case patterns are those that, for a given routing 𝑟𝑟 , induce the smallest 

baseload normalized maximum switch load  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇)
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) . 

To gain insight into the effects of particular traffic patterns, and to better visually 

illustrate and classify them, we have found it helpful to decompose their corresponding 

traffic matrices in a manner that highlights the switch levels loaded by each fat-tree send-

receive pair. By definition, an m-port n-tree 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) contains n switch levels. Send-

receive pairs that traverse 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0  (the core switches), traverse all 𝑛𝑛 –  1  lower levels. 

Send-receive pairs that traverse 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1 (the highest-level aggregation switches), but not 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0, traverse 𝑛𝑛 –  2 lower levels, and so on. As the pairs traversing 𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 0 are disjoint 

from the pairs traversing 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1 but not 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0, and the pairs traversing 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 2 but not 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1, and so on, it follows that any traffic matrix for 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) can be decomposed as 

𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑀𝑀0 + 𝑇𝑇𝑀𝑀1 + ⋯+ 𝑇𝑇𝑀𝑀𝑛𝑛−1 (5. 13) 

where 𝑇𝑇𝑀𝑀𝑖𝑖 , 𝑖𝑖 = 0, 1, … ,𝑛𝑛 − 1, indexes those send-receive pairs in 𝑇𝑇𝑇𝑇 that traverse 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖, 

but no higher level. 

 The utility of this decomposition is best illustrated by example. Consider the 4-port 

3-tree 𝐹𝐹𝐹𝐹(4, 3) depicted in Figure 5.3. As this tree has 3 levels, all 𝑇𝑇𝑇𝑇 on 𝐹𝐹𝐹𝐹(4, 3) can be 

decomposed as 𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑀𝑀0 + 𝑇𝑇𝑀𝑀1 + 𝑇𝑇𝑀𝑀2 . To more conveniently display this 

decomposition in a single figure we adopt the following convention: 

• Source-destination pairs in 𝑇𝑇𝑀𝑀2  will be labeled 𝐸𝐸  (because they correspond to 

communications that only traverse 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 2 (edge) switches. 

• Source-destination pairs in 𝑇𝑇𝑀𝑀1  will be labeled 𝐴𝐴  (because they correspond to 

communications that traverse 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1 (aggregation) but not 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 (core) switches. 



www.manaraa.com

74 

 

 

 

• Source-destination pairs in 𝑇𝑇𝑀𝑀0  will be labeled 𝐼𝐼  (because they correspond to 

interpod communications that traverse a 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 (core) switch. 

Superimposing the decomposed 𝑇𝑇𝑇𝑇𝑇𝑇 on top of each other we obtain, for the node labeling 

in Figure 5.3, the generic traffic matrix representation depicted in Figure 5.4. 

 To examine the decomposition of a specific traffic matrix one simply superimposes 

the specific matrix on the generic representation. Consider, for instance, the traffic matrices 

corresponding to the test patterns Stride(2), and Stride(4) in [31]. Let the nodes in 𝐹𝐹𝐹𝐹(4, 3) 

be labeled from left to right as 0, 1, …, 15. Under Stride(2), every node 𝑖𝑖 sends a unit of 

traffic to node ‘(𝑖𝑖 + 2) mod 16’. Under Stride(4), every node 𝑖𝑖 sends a unit of traffic to 

node ‘(𝑖𝑖 + 4) mod 16’. More concretely, Stride(2) specifies that each node in the smallest 

(1 level) subtree 𝑋𝑋′ send traffic to the node in the same position in the adjacent 1 level 

subtree (𝑋𝑋′ + 1) mod 8. Similarly, Stride(4) specifies that each node in the 2 level subtree 

𝑋𝑋  send traffic to the node in the same position in the adjacent 2  level subtree 

(𝑋𝑋 + 1) mod 4. Such patterns are often referred to as “permutation traffic” because each 

node sends traffic to a distinct destination. Plotting Stride(2) and Stride(4) on Figure 5.4 

we obtain Figures 5.5(a) and 5.5(b). Close examination of these figures, indicates that 

Stride(4) only generates “inter-pod” traffic, while Stride(2) generates a mixture of “inter-

pod” and “same aggregation switch” traffic. 

 To use the decomposition to identify worst-case and best-case traffic patterns, 

observe from Figures 5.3 and 5.4 that: 

• “Same edge switch” traffic only loads edge switches. 

• “Same aggregation switch” traffic loads both edge and aggregation level switches. 

• “Inter-pod” traffic loads edge, aggregation, and core level switches. 
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Figure 5.3: An example FT(4, 3) fat-tree network. 

 

 

Figure 5.4: Traffic matrix decomposition for FT(4, 3). 
Symbols: E – same edge switch, A – same aggregation switch, I – inter-pod. 
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(a) Stride(2) 

 

 
(b) Stride(4) 

Figure 5.5: Traffic matrix decomposition for (a) Stride(2) and (b) Stride(4). 
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Consider first the class of best-case patterns. As discussed in Section 5.1.1, traffic 

load on the “edge” switches ( 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛 − 1 ) does not depend on the routing scheme. 

Therefore, traffic patterns that contain only “same edge switch” traffic (“𝐸𝐸” symbols on 

Figure 5.4), belong to this class and impose the same switch load as optimal routing. 

Consider next the class of worst-case patterns. Observe first that worst-case patterns 

should contain “inter-pod” traffic (“𝐼𝐼” symbols on Figure 5.4), because this type of traffic 

loads switches at all three levels. Additionally, as 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) is calculated as the 

maximum of all row and column sums, to achieve the highest baseload normalized 

maximum switch load, all columns and rows of worst-case patterns should have the same 

sum. For example, we can place a single block of traffic in each column and row, within 

the “𝐼𝐼” symbol areas. 

Clearly, the traffic pattern Stride(4), which specifies that each node in the 2 level 

subtree 𝑋𝑋 of 𝐹𝐹𝐹𝐹(4, 3) send a unit of traffic to the node in the same position in the adjacent 

2 level subtree (𝑋𝑋 + 1) mod 4, satisfies this requirement and is thus a worst-case pattern. 

The following theorem generalizes this observation to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ��𝑚𝑚
2
�
𝑛𝑛−1

�, under which every 

node 𝑖𝑖 sends a unit of traffic to node �𝑖𝑖 + �𝑚𝑚
2
�
𝑛𝑛−1

� mod �2 × �𝑚𝑚
2
�
𝑛𝑛
�.  

Theorem 5.5. Given 𝐹𝐹𝐹𝐹(𝑚𝑚, 𝑛𝑛) , with 𝑚𝑚  a power of 2 and 𝑛𝑛 ≥ 1 , the traffic pattern 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ��𝑚𝑚
2
�
𝑛𝑛−1

� achieves the baseload normalized maximum switch load  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇)
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)  

upper bounds in Table 3.1, for routing schemes 𝑟𝑟 = 𝑁𝑁𝑁𝑁, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. 

Proof: Given 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ��𝑚𝑚
2
�
𝑛𝑛−1

� (“𝑆𝑆𝑆𝑆𝑆𝑆”) specifies that each source node in the 

𝑛𝑛 − 1 level subtree 𝑋𝑋 send a unit of traffic to the node in the same position in the adjacent 

𝑛𝑛 − 1 level subtree (𝑋𝑋 + 1) mod 𝑚𝑚. All connections are “inter-pod”. As each node sends 
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the same amount of traffic they all send 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑆𝑆𝑆𝑆𝑆𝑆). Additionally, we observe that 

the traffic sent by all nodes, which equals 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑆𝑆𝑆𝑆𝑆𝑆) × 2 × �𝑚𝑚
2
�
𝑛𝑛

, must pass 

through 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 “core” switches. 

Consider first Normal Routing (𝑁𝑁𝑁𝑁). In our proof of Theorem 3.1, we showed that 

the leftmost 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 switch is maximally loaded by 𝑇𝑇𝑇𝑇𝑇𝑇 under which all source nodes’ 

traffic is directed towards 𝑛𝑛 − 1 level sub-fat-trees other than their own. Because 𝑆𝑆𝑆𝑆𝑆𝑆 is 

such a 𝑇𝑇𝑇𝑇, we have 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑁𝑁𝑁𝑁, 𝑆𝑆𝑆𝑆𝑆𝑆) = 𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑆𝑆𝑆𝑆𝑆𝑆)  ×  2 × �𝑚𝑚
2
�
𝑛𝑛

. 

Consider next Dynamic NIx-Vector Routing (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷). By our proof of Theorem 3.2, 

because each node sends 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑆𝑆𝑆𝑆𝑆𝑆), each link in the network carries traffic to or 

from ��𝑚𝑚
2
� source nodes for 𝑛𝑛 = 2, and traffic to or from 𝑚𝑚

2
 source nodes for 𝑛𝑛 = 3. As 

each switch in 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) has 𝑚𝑚 links, the maximum switch load 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, 𝑆𝑆𝑆𝑆𝑆𝑆) 

is thus 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑆𝑆𝑆𝑆𝑆𝑆) × ��𝑚𝑚
2
� × 𝑚𝑚 for 𝑛𝑛 = 2, and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑆𝑆𝑆𝑆𝑆𝑆) × 𝑚𝑚

2
× 𝑚𝑚 for 𝑛𝑛 = 3. 

Consider next Multipath Routing via Dynamic NIx-Vectors (using all paths) 

(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀). As shown above, all nodes’ traffic must pass through 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 “core” switches. 

Because 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 achieves the min-max optimal switch load (Theorem 3.5), traffic load is 

uniformly distributed among the �𝑚𝑚
2
�
𝑛𝑛−1

 core switches. Hence each switch carries traffic 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑆𝑆𝑆𝑆𝑆𝑆) = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑆𝑆𝑆𝑆𝑆𝑆) × 2 ×
�𝑚𝑚2 �

𝑛𝑛

�𝑚𝑚2 �
𝑛𝑛−1 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑆𝑆𝑆𝑆𝑆𝑆) × 𝑚𝑚. 

Finally, consider Multipath Routing via Dynamic NIx-Vectors (using ⌈𝑋𝑋/𝑘𝑘⌉ paths) 

(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀). First, note that there are �𝑚𝑚
2
�
𝑛𝑛−1

× 𝑚𝑚 total links connected to the 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 

“core” switches. In the worst case, all nodes’ traffic is distributed over the same �𝑚𝑚
2
�
𝑛𝑛−1

×
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𝑚𝑚
𝑘𝑘

 links. Hence each 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0  link carries 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑆𝑆𝑆𝑆𝑆𝑆) × 2 × �𝑚𝑚
2
�
𝑛𝑛

/ ��𝑚𝑚
2
�
𝑛𝑛−1

×

𝑚𝑚
𝑘𝑘
� = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑆𝑆𝑆𝑆𝑆𝑆) × 𝑘𝑘  traffic, and each 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0  switch, with 𝑚𝑚  links attached, 

carries 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑆𝑆𝑆𝑆𝑆𝑆) = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑆𝑆𝑆𝑆𝑆𝑆) × 𝑘𝑘 × 𝑚𝑚 traffic. □ 

Theorem 5.5 says that no 𝑇𝑇𝑇𝑇  induces higher baseload normalized maximum 

switch load in 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) than 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ��𝑚𝑚
2
�
𝑛𝑛−1

�. It is thus a worst case 𝑇𝑇𝑇𝑇 for these routings. 

 

Table 5.1: Traffic matrix Stride(4) on the 4-port fat-tree FT(4, 3). 

Node # 000  001  010  011  100  101  110  111  200  201  210  211  300  301  310  311  

000     1            
001      1           
010       1          
011        1         
100         1        
101          1       
110           1      
111            1     
200             1    
201              1   
210               1  
211                1 
300 1                
301  1               
310   1              
311    1             

 
 
 

Next, we evaluate the performance ratios of different routing schemes under the 

worst-case traffic pattern Stride(4) (“𝑆𝑆4”) on the 4-port fat-tree 𝐹𝐹𝐹𝐹(4, 3). The traffic matrix 

for Stride(4), with each node sending one unit of traffic, is shown in Table 5.1. We use 
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Maple, a powerful symbolic and numeric computing platform, for the evaluations. Source 

codes for the Maple programs can be found in the Appendix. 

The routing schemes to be evaluated include: Multipath Routing via Dynamic NIx-

Vectors (using all paths) (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀), Multipath Routing via Dynamic NIx-Vectors (using 

⌈𝑋𝑋/𝑘𝑘⌉ paths) (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) with 𝑘𝑘 = 4
3

, 2 𝑎𝑎𝑎𝑎𝑎𝑎 4, Dynamic NIx-Vector Routing (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) and 

Normal Routing (𝑁𝑁𝑁𝑁). Maple results are shown in Table 5.2. They are consistent with the 

results of Theorems 5.1 through 5.4. 

 

Table 5.2: Maple evaluation results for comparing different 
routing schemes’ oblivious performance ratios 

Routing scheme 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊0(∙,𝑆𝑆4) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊1(∙, 𝑆𝑆4) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(∙,𝑆𝑆4) 

𝑁𝑁𝑁𝑁 16 8 4 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 8 8 2 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝑘𝑘 = 4) 16 8 4 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝑘𝑘 = 2) 8 8 2 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝑘𝑘 =
4
3

) 
16
3

 4 
4
3

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 4 4 1 
 
 
 

5.3   Validation by Simulations on the ns-3 Platform 

In this section, we assess the potential benefits of our proposed routing schemes 

through ns-3 simulations on fat-trees under a variety of communication patterns. Results 

indicate that over a variety of experimental conditions, the proposed schemes reduce the 

incidence of TCP Incast compared to standard routing schemes. 
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5.3.1   Simulation Setup 

We use the ns-3 network simulator [95] (version 3.14.1) to validate our approach. 

ns-3 is an open, extensible discrete-event network simulation platform, developed 

primarily for networking research and educational use. It contains a variety of models for 

network protocols and routing. The simulator itself is written in C++, with optional Python 

bindings. Both C++ and Python are supported for ns-3 simulation scripts. 

5.3.1.1   Simulation Parameters 

Table 5.3: Parameters used in our ns-3 simulations. 

Parameter 
Values for Random,  
Stride(2) and Stride(4) 

Values for 3 Senders,  
5 Senders and 7 Senders 

Link Bandwidth 1 Gbps 1 Gbps 

Link Delay 500 µs 500 µs 

Data to be sent from each node 2 MB (2,000,000 bytes) 262144 bytes × 10 blocks 

Switch buffer size varies from 10~90 packets varies from 20~200 packets 

TCP implementation TCP Reno TCP Reno 

TCP max segment size 1452 bytes 1452 bytes 

Max size of receiver window 65535 bytes 65535 bytes 

Fast retransmit threshold 3 duplicate ACKs 3 duplicate ACKs 

RTOmin 200 ms 200 ms 

 
 
 

A ns-3 simulation was created from scratch, using the 𝐹𝐹𝐹𝐹(4, 3) fat-tree topology as 

shown in Figure 1.4. The complete simulation code can be found in the Appendix. 

Figure 5.6 shows a snapshot of our simulation topology, as displayed in the ns-3 

PyViz [96] simulation animation interface. Table 5.3 summarizes the parameters used in 

our simulations. All links in the network are 1 Gbps, with a round-trip delay of 500 µs. We 
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use the TCP Reno implementation with a maximum segment size (MSS) of 1452 bytes, 

and a minimum TCP re-transmission timeout (RTO) value of 200 ms. The TCP receiver 

window has a maximum size of 65535 bytes. 

 
 

 

Figure 5.6: Our ns-3 simulation topology. 

 
 

For traffic patterns Random, Stride(2) and Stride(4), the amount of data to be sent 

from each node is 2 MB (2,000,000 bytes), and switch buffer sizes vary from 10 to 90 

packets. For traffic patterns 3 Senders, 5 Senders and 7 Senders, each node sends 262144 

bytes × 10 blocks of data, and switch buffer sizes vary from 20 to 200 packets. 

5.3.1.2   Illustrations of the Proposed Schemes 

The routing schemes to be investigated include: 

1. Normal Routing, which corresponds to the single-path IPv4 table-based scheme, 

2. Normal Routing with ECMP, which utilizes the per-packet ECMP feature in ns-3, 

3. Dynamic NIx-Vector Routing, a NIx-vector routing variant that uses our modified 

BFS algorithm to select one path from the multiple available shortest paths, 
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Figure 5.7: Path selection by different schemes in our simulation. 

(a) Normal Routing, (b) Dynamic NIx-Vector Routing, 
(c) Multipath Routing via Dynamic NIx-Vectors. 
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4. Multipath Routing via Dynamic NIx-Vectors, which extends NIx-vector routing to 

the multipath case using the Front-Back Algorithm (introduced in Chapter 4) to 

distribute traffic across the shortest paths, and 

5. Dual IPv4/IPv6 Routing with Front-Back utilizes both IPv4 and IPv6 to set up two 

different paths, and then use the Front-Back Algorithm to send data. 

Figure 5.7 shows a “live” snapshot of our ns-3 simulation, with traffic flows between nodes 

highlighted to illustrate the path selection of the routing schemes. 

Normal routing always picks the same shortest path from the four available for each 

source-destination pair. This can be seen in Figure 5.7 (a). To implement Dynamic NIx-

Vector Routing, the BFS function in the existing ns-3 NIx-Vector Routing scheme was 

modified, so that every time it is called it returns a randomly selected shortest path from 

those discovered by BFS. An example is shown in Figure 5.7 (b). Choosing different 

random seeds results in different shortest paths being selected. Next, we apply the Front-

Back Algorithm. The resulting Multipath Routing via Dynamic NIx-Vectors will further 

balance traffic, as illustrated in Figure 5.7 (c). 

5.3.1.3   Traffic Patterns Investigated 

We investigated the following traffic patterns from [31]. Let the nodes in 𝐹𝐹𝐹𝐹(4, 3) 

be labeled from left to right as 0, 1, …, 15, these patterns can be described as follows: 

• Random: Every node 𝑖𝑖 sends the same traffic to any other node in the network with 

uniform probability. 

• Stride(2): Every node 𝑖𝑖 sends the same traffic to node ‘(𝑖𝑖 + 2) mod 16’. 

• Stride(4): Every node 𝑖𝑖 sends the same traffic to node ‘(𝑖𝑖 + 4) mod 16’. 
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Figure 5.8: Traffic matrices for Stride(2) (left) and Stride(4) (right). 

 
 

   

 

Figure 5.9: Traffic matrices for 3 Senders (top left), 
5 Senders (top right) and 7 Senders (bottom). 
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The traffic matrices for Stride(2) and Stride(4) on 𝐹𝐹𝐹𝐹(4, 3) are illustrated in Figure 

5.8. The amount of data to be sent from each node is 2 MB (2,000,000 bytes). We selected 

Stride(4) because it is an important traffic pattern for comparing routing schemes’ 

performance. Specifically, in Theorem 5.5 we showed that Stride(4) is a worst-case 𝑇𝑇𝑇𝑇 

for the 𝐹𝐹𝐹𝐹(4, 3) routing schemes that we study, and that no 𝑇𝑇𝑇𝑇 induces higher baseload 

normalized maximum switch load in 𝐹𝐹𝐹𝐹(4, 3) than Stride(4). 

Some additional traffic patterns that we investigated include: 

• 3 Senders: Each node receives data from 3 other nodes in the network. 

• 5 Senders: Each node receives data from 5 other nodes in the network. 

• 7 Senders: Each node receives data from 7 other nodes in the network. 

Figure 5.9 shows the traffic matrices for 3, 5 and 7 Senders. These traffic patterns 

represent the typical many-to-one barrier-synchronized workload in data centers, as 

discussed in Section 5.2.1. Specifically, each client requests 10 blocks of data, 262144 

bytes × 𝑁𝑁 each, striped over 𝑁𝑁 servers (𝑁𝑁 = 3, 5, or 7, respectively). Clients request block 

𝑘𝑘 + 1 only after successful receipt of all fragments in block 𝑘𝑘. 

5.3.1.4   Tools for Gathering Statistics 

We use FlowMonitor [97] to gather statistics for each flow. To further improve the 

accuracy of the flow statistics, we enabled packet capture during simulation, and then used 

a bash script we wrote to automatically process the .pcap files with tshark (part of 

Wireshark), retrieve statistics and store them in ASCII text files. After that, we ran a 

MATLAB script which takes these text files as input and automatically generates plots of 

various statistics for the schemes. These scripts are available in the Appendix. To speed up 

simulations, we used GNU parallel [98] to run multiple simulations at the same time.  
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5.3.2   Sample Outputs from Simulation 

Table 5.4 shows sample outputs from a run of the ns-3 simulation program for 

Normal Routing. Note that for readability, fewer flows were created in this sample run. 

The first part of the output displays various user-controlled parameters, which can 

be specified from the command-line. “Routing scheme” specifies which routing scheme is 

being simulated. QueueSize sets the buffer size (in packets) in all switches. SendBytes is 

the total amount of data (in bytes) to be transferred from each sender. SendPattern specifies 

which communication pattern (Random, Stride(2), or Stride(4)) should be used. 

The second part of the output shows various flow statistics, gathered by 

FlowMonitor [97]. These include, for each flow, the time when the last packet is received, 

total transferred bytes, average throughput, etc. A summary across all flows is then shown. 

 

Table 5.4: Sample output from simulations for Normal Routing. 

*****Parameters Selected***** 
Random seed is 81, Routing scheme is Normal Routing 
QueueSize is 30, SendBytes is 5000000, SendPattern is STRIDE(4) 
***************************** 
Simulation running, please wait ... 
 
Flow 1: timeLastRx: 1.53 s, txBytes: 5017 KB, rxBytes: 5017 KB, lostPackets: 0, throughput: 9435 KB/s 
Flow 2: timeLastRx: 1.87 s, txBytes: 5069 KB, rxBytes: 5032 KB, lostPackets: 26, throughput: 5806 KB/s 
Flow 3: timeLastRx: 1.53 s, txBytes: 5017 KB, rxBytes: 5017 KB, lostPackets: 0, throughput: 9435 KB/s 
Flow 4: timeLastRx: 1.61 s, txBytes: 5018 KB, rxBytes: 5017 KB, lostPackets: 1, throughput: 8275 KB/s 
 
Average flow completion time: 0.64 s, Average flow throughput: 8238 KB/s 
Total bytes transferred: 20123 KB, Total lost packets: 27 
 
Flow 1: (10.1.1.1/49153 --> 10.2.1.1/1), Flow 2: (10.1.1.3/49153 --> 10.2.1.3/2) 
Flow 3: (10.1.3.1/49153 --> 10.2.3.1/3), Flow 4: (10.1.3.3/49153 --> 10.2.3.3/4) 
 
Simulation took: 9 seconds 
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The third part of the output displays the connection details of each flow, in the form 

of (source address/source port  destination address/destination port). Finally, the 

simulation duration (in wall clock time) is shown. 

Another sample output, generated by a run of the ns-3 simulation for Multipath 

Routing via Dynamic NIx-Vectors, is shown in Table 5.5, with the same parameters. 

Here, flow 1 and flow 2 are grouped; flow 3 and flow 4 are grouped, etc. The sum 

of transferred bytes for all flows in each group is SendBytes. However, the number of 

transferred bytes for each flow can vary, as they may encounter different path conditions. 

 

Table 5.5: Sample output from simulations for 
Multipath Routing via Dynamic NIx-Vectors. 

*****Parameters Selected***** 
Random seed is 81, Routing scheme is Multipath Routing via Dynamic NIx-Vectors 
QueueSize is 30, SendBytes is 5000000, SendPattern is STRIDE(4) 
***************************** 
Simulation running, please wait ... 
 
Flow 1: timeLastRx: 1.29 s, txBytes: 2527 KB, rxBytes: 2527 KB, lostPackets: 0, throughput: 8568 KB/s 
Flow 2: timeLastRx: 1.3 s, txBytes: 2490 KB, rxBytes: 2490 KB, lostPackets: 0, throughput: 8424 KB/s 
Flow 3: timeLastRx: 1.3 s, txBytes: 2527 KB, rxBytes: 2527 KB, lostPackets: 0, throughput: 8549 KB/s 
Flow 4: timeLastRx: 1.3 s, txBytes: 2490 KB, rxBytes: 2490 KB, lostPackets: 0, throughput: 8423 KB/s 
Flow 5: timeLastRx: 1.29 s, txBytes: 2527 KB, rxBytes: 2527 KB, lostPackets: 0, throughput: 8570 KB/s 
Flow 6: timeLastRx: 1.3 s, txBytes: 2490 KB, rxBytes: 2490 KB, lostPackets: 0, throughput: 8412 KB/s 
Flow 7: timeLastRx: 1.3 s, txBytes: 2527 KB, rxBytes: 2527 KB, lostPackets: 0, throughput: 8558 KB/s 
Flow 8: timeLastRx: 1.3 s, txBytes: 2490 KB, rxBytes: 2490 KB, lostPackets: 0, throughput: 8423 KB/s 
 
Average flow completion time: 0.3 s, Average flow throughput: 16982 KB/s 
Total bytes transferred: 20070 KB, Total lost packets: 0 
 
Flow 1: (10.1.1.1/49153 --> 10.2.1.1/1), Flow 2: (10.1.1.5/49153 --> 10.2.1.5/1) 
Flow 3: (10.1.1.3/49153 --> 10.2.1.3/2), Flow 4: (10.1.1.7/49153 --> 10.2.1.7/2) 
Flow 5: (10.1.3.1/49153 --> 10.2.3.1/3), Flow 6: (10.1.3.5/49153 --> 10.2.3.5/3) 
Flow 7: (10.1.3.3/49153 --> 10.2.3.3/4), Flow 8: (10.1.3.7/49153 --> 10.2.3.7/4) 
 
Simulation took: 9 seconds 
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5.3.3   Addressing the Incast Problem 

From our earlier analysis of switch load in Chapter 3, we concluded that compared 

to standard routing schemes, our proposed schemes do a better job of load balancing and 

avoiding switch buffer overfills which are the root causes of Incast. 

 
 
 

 
       (a)                                                                    (b) 

 

 
       (c)                                                                    (d) 

Figure 5.10: Illustration of the effectiveness of proposed schemes on alleviating Incast. 
(a) Normal Routing, (b) Normal Routing w/ ECMP, (c) Dynamic NIx-Vector 

Routing, (d) Multipath Routing via Dynamic NIx-Vectors. 
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In our ns-3 simulations, by tracing the TCP congestion window size, we 

demonstrated the effectiveness of our proposed schemes on alleviating Incast, which 

agreed with our analysis. The results are plotted in Figure 5.10. We see that both Normal 

Routing and Normal Routing with ECMP suffer drastic reductions of TCP congestion 

window size shortly after data transfer begins. This corresponds to significant drops in 

perceived application-level throughput (goodput) and is due to Incast. For our proposed 

schemes, Dynamic NIx-Vector Routing and Multipath Routing via Dynamic NIx-Vectors, 

we do not see any TCP congestion window size reduction at similar time intervals. 

Therefore, we conclude that our schemes are indeed effective in alleviating Incast. 

Additionally, we observe from Figure 5.10 that by avoiding Incast, our proposed 

routing schemes complete data transfer earlier than standard schemes. 

5.3.4   Performance Study 

To compare routing schemes’ performance, we use the following metrics: 

1. Average flow completion time [58, 99], defined as the average finish time across 

all flows. The time duration begins with TCP handshake, and ends when an ACK 

for the last data segment is received. 

2. Average flow throughput, defined as the average throughput across all flows. The 

throughput for each flow is calculated by dividing the total bytes transferred by the 

time duration of the transfer. 

The first metric, average flow completion time, is of particular interest for 

distributed data center applications, such as web search and analytics [100]. As shown in 

[101], network flows that fail to return their partial results on time can severely affect the 

responsiveness of real-time applications or degrade their results. 
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Figure 5.11: Comparison of average flow completion time and throughput for Stride(4). 

 
 
 

 

Figure 5.12: Comparison of average flow completion time and throughput for Random. 
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Figure 5.13: Comparison of average flow completion time and throughput for Stride(2). 

 
 
 

We first compare the performance of the proposed routing schemes under traffic 

patterns Random, Stride(2) and Stride(4). The simulation results (averaged over 20 runs) 

are shown in Figures 5.11-5.13. The left subfigures show the average flow completion time, 

i.e. the average time duration for each node’s data transfer to complete (lower is better); 

the right subfigures show average flow throughput (higher is better). 

In Section 5.3.3, we showed, by tracing the TCP congestion window size, that our 

proposed schemes are effective at alleviating Incast. As observed in Figure 5.10, whenever 

Incast occurs, there is a steep decline in TCP throughput followed by a slow recovery. This 

will affect the overall average flow throughput, which can be seen from our results. 

We now analyze the results in Figures 5.11-5.13. First, we compare Dynamic NIx-

Vector Routing with Normal Routing and Normal Routing with ECMP (which uses the per-

packet ECMP feature in ns-3). In the figures, these schemes’ performances are plotted, 
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respectively, as gold, blue and red lines. From the figures, we can see that Dynamic NIx-

Vector Routing outperforms Normal Routing for all three communication patterns. In 

addition, Stride(4) results in the most performance difference between the two schemes. 

This is because the core switches experience heavy traffic in Stride(4), so any improvement 

in traffic balancing leads to more significant results. 

The reason that Normal Routing with ECMP has bad performance is due to packet 

reordering induced by per-packet ECMP, which confuses TCP as packet loss and 

significantly degrades its performance. The scheme improves slightly in Stride(2), because 

of the lower number of hops (4 versus 6) between source-destination pairs. 

Next, we compare Multipath Routing via Dynamic NIx-Vectors and Dual IPv4/IPv6 

Routing with Front-Back and Normal Routing, plotted as the magenta, green and blue lines, 

respectively. We observe that the first two, which are our proposed schemes, significantly 

outperform the last one in the simulation. Looking at the “average flow throughput” plot, 

we see that the most improvement occurs at approx. buffer size 50, with a percentage of 

around 80% under Stride(4). The performance difference between Multipath Routing via 

Dynamic NIx-Vectors and Dual IPv4/IPv6 Routing with Front-Back is generally small. 

However, under the Random communication pattern, the latter has better performance. 

In conclusion, from the figures we can see that our proposed scheme Multipath 

Routing via Dynamic NIx-Vectors outperforms both Normal Routing and Normal Routing 

with ECMP for all three communication patterns Random, Stride(2) and Stride(4). 

From the “average flow completion time” plot, we see that the most improvement 

under Stride(4) is observed at approx. buffer size 50, reducing the completion time by 50% 

or more. 
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Figure 5.14: Comparison of average flow completion time and throughput for 3 Senders. 

 
 
 

 
 

Figure 5.15: Comparison of average flow completion time and throughput for 5 Senders. 
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Figure 5.16: Comparison of average flow completion time and throughput for 7 Senders. 

 
 

Next, we compare performance of the proposed routing schemes under the 

additional traffic patterns 3 Senders, 5 Senders and 7 Senders, as illustrated earlier in this 

section. The results are plotted in Figures 5.14-5.16. Again, the left subfigures show the 

average flow completion time, i.e. the average time duration for each node’s data transfer 

to complete (lower is better); the right subfigures show average flow throughput (higher is 

better). We can see that our proposed schemes Multipath Routing via Dynamic NIx-Vectors 

and Dual IPv4/IPv6 Routing with Front-Back outperform Normal Routing for all three 

communication patterns. 

Specifically, looking at the “average flow completion time” subfigures, we see that: 

For 3 Senders, the most improvement is observed at approx. buffer size 80, 

reducing the completion time by 75% or more. 
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For 5 Senders, the most improvement is observed at approx. buffer size 140, 

reducing the completion time by 80% or more. 

For 7 Senders, the most improvement is observed at approx. buffer size 180, 

reducing the completion time by 80% or more. 

 
 
 

 

Figure 5.17: Comparison of average flow completion time and throughput for 7 Senders, 
with 1ms RTO instead of the normal 200ms RTO. 

 
 

Finally, we investigate our proposed schemes’ performance in conjunction with 

other researchers’ method of reducing the TCP re-transmission timeout (RTO) [4]. Figure 

5.17 plots the schemes’ performance under traffic pattern 7 Senders, with 1ms RTO instead 

of the normal 200ms RTO. We observe that, under the reduced TCP RTO of 1ms, our 

proposed scheme Multipath Routing via Dynamic NIx-Vectors still outperforms Normal 

Routing by both reducing average flow completion time and improving throughput. More 
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importantly, this means our approach can be “complementary” to the method of reducing 

TCP RTO, and both methods could be applied simultaneously to further improve 

performance. 

5.4   Conclusions 

In this chapter, we first defined and analyzed the oblivious performance ratios 

(OPRs) under the proposed routing schemes. We then explored typical Incast traffic 

patterns in data center networks, i.e. the “barrier-synchronized request workload”, and 

summarized the conditions favorable to the onset of TCP Incast. Next, we identified 

important traffic patterns using our new method of traffic matrix decomposition, and 

illustrated different routing schemes’ performance ratios. 

Next, we assessed the potential benefits of our proposed routing schemes through 

ns-3 simulations on fat-trees under a variety of communication patterns. By tracing the 

TCP congestion window size, we demonstrated the effectiveness of our schemes on 

alleviating TCP Incast. In the detailed performance study that followed, we focused on two 

important metrics, namely the average flow completion time and average flow throughput, 

to help compare routing schemes’ performance. Results indicate that the proposed schemes 

outperform standard routing schemes over a variety of experimental conditions. 
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CHAPTER 6  

CONCLUSIONS AND POSSIBLE EXTENSIONS 

6.1   Summary of Research 

In this dissertation, we used network regularity to overcome TCP Incast through 

multipath routing. First, we developed new oblivious, multi-path, routing schemes for fat-

tree networks, which provide a low overhead means to reduce the likelihood of Incast. 

Next, we established that these schemes delay the onset of Incast, by deriving tight worst-

case loading bounds for fat-tree switches and proving that our schemes lower these bounds. 

We then investigated a novel “front-back” approach to avoid multipath reordering, proved 

its optimality for two paths, and extended the algorithm to N paths (N > 2). 

Our performance analysis began with an investigation of different routing schemes’ 

oblivious performance ratios (OPRs). We then explored typical Incast traffic patterns in 

data center networks, and described a novel method for traffic matrix decomposition to 

help visually illustrate and classify traffic patterns. Finally, we assessed the potential 

benefits of our schemes through ns-3 simulations on fat-trees under a variety of traffic 

conditions. Results indicate that over a variety of experimental conditions, the proposed 

schemes reduced the incidence of TCP Incast compared to standard routing schemes. 

6.2   Possible Extensions 

Alternative NIx-like approach by enabling source routing in data centers 

Source routing [102] allows the sender of a packet to specify the route the packet 

takes through the network, either partially or completely. There are IPv4 header options 
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and IPv6 routing header extensions that can be used for source routing. Unfortunately, 

these options have been disabled on most Internet switches due to security concerns. For 

instance, an attacker can spoof his/her IP address to impersonate another user, while still 

receiving responses by specifying his/her real IP address as one of the hops that the packets 

must traverse. In recent years, source routing has seen increased application in routing 

protocols. In [34], the authors proposed BCube Source Routing (BSR), specific to the 

BCube topology. Notable examples for wireless networks include Dynamic Source 

Routing (DSR) [103] and Multipath Dynamic Source Routing (MP-DSR) [104]. 

 
 

 

Figure 6.1: Some state-of-the-art data center topologies from [105]. 
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We argue that since an entire data center network is often managed and maintained 

by a single company or entity, the security issues stated above become less of a concern. 

Hence, enabling the source routing options for all switches in a data center would give us 

great flexibility in routing. This would be a viable alternative to the NIx-Vector routing 

schemes. Given that source routing is enabled, the source node can easily control which 

path each packet will traverse, by simply adding the appropriate options in packet headers. 

Therefore, an interesting extension could be to investigate the possibilities of applying 

source routing to data center networks. 

Larger-scale fat-trees and irregular data center topologies 

Our proposed schemes could easily be extended to larger-scale topologies, such as 

fat-trees with 8- or 16-port switches. Figure 6.1 illustrates some of these state-of-the-art 

topologies, including the VL2 and BCube topologies. Multipath Routing via Dynamic NIx-

Vectors could be directly applied to these topologies, because the modified BFS path 

selection process does not depend on the topology used. For Dual IPv4/IPv6 Routing with 

Front-Back, when applied to fat-trees with 8- or 16-port switches, one could re-use the 

static routing setup in Figure 2.2, scaled to fit the larger topology. 

A possible extension of our work is to investigate the performance of our proposed 

schemes in large topologies. Specifically, we could implement and test our N-path “Front-

Back” Algorithm, because there can be more shortest paths available between each source-

destination pair. In addition, we could see how algorithm performance will be affected in 

other topologies where the multiple paths have different delays. 
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Investigate other path selection algorithms for BFS 

Another possible extension is to investigate other path selection algorithms in the 

breadth-first search (BFS) phase of Dynamic NIx-Vector Routing, for adapting to different 

scenarios as appropriate. For different groups of communication patterns in the data center, 

we could use appropriate path selection policies to improve traffic balance. The first step 

would be further modifying the BFS algorithm in ns-3’s NIx-Vector routing code, so that 

we can store all the discovered shortest paths for retrieval; alternatively, we can generate 

NIx-Vectors for all the multiple paths, and store them for retrieval later. 

A possible metric for ranking different path selection schemes’ performance would 

be to count the number of simultaneous connections before Incast collapse. The higher the 

number, the more effectively that scheme works to alleviate Incast. 

Experiment on real network testbeds 

Besides showing advantages in theoretical calculation and simulations, an 

interesting extension would be to validate our proposed schemes in real-life scenarios. For 

example, we can run experiments using the Open Network Laboratory (ONL) [106] or 

Emulab [107] and gather statistics on how well our proposed schemes perform, under 

different circumstances. ONL and Emulab are both open to public researchers. We could 

create different data center topologies over these testbeds to validate our schemes and 

observe their performance. 

Implementation of the proposed approaches 

To date our proposed approaches to mitigating the Incast problem show good 

promise. We conclude here with a brief discussion of their implementation issues. 
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NIx-Vector/Source routing requires the storage of routing path information in 

packet headers. For source routing, existing IPv4 Options such as “strict source and record 

route” (SSRR) and “loose source and record route” (LSRR) could be used. For NIx-Vector 

routing, in the complete version of the NIx-Vector paper by Riley et al. [68], the authors 

proposed several new IPv4 Options for this purpose, such as the “Record-NIx-Vector 

Option” and “Use-NIx-Vector Option”. 

IPv6 defines a set of additional headers called “extension headers” to achieve 

similar functionalities as IPv4 Options. Among these is the routing header, which provides 

support for source routing and IPv6 mobility. This header allows a source to list one or 

more intermediate nodes that a packet must “visit” on its way to the destination, so it can 

be utilized by NIx-Vector/Source routing. 

The issues are somewhat different for Virtual Table-Based Routing (specifically, 

Dual IPv4/IPv6 Routing). As mentioned earlier in Chapter 2, the implementation is 

straightforward when data center switches are dual-stacked, i.e. with both IPv4 and IPv6 

enabled. If this is not the case, a more complex alternative would be to install multiple IP 

stacks on different interfaces of a switch and then set their routing tables so that packets 

received on different interfaces are routed differently. 

The Front-Back Algorithm stands on its own and is straightforward to implement 

in conjunction with any scheme for which the existing multiple paths between each source-

destination pair are used simultaneously. 
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APPENDIX 

SIMULATION SOURCE CODE AND SCRIPTS 

The following source codes and scripts are available in the srccode_scripts directory: 

  

File Name Description 

dnvr.cc Complete ns-3 simulation source code for Random, Stride(2) and Stride(4) 

dnvr2.cc Complete ns-3 simulation source code for 3 Senders, 5 Senders and 7 Senders 

runsim.sh 
Bash script to run simulations under different routing schemes, for Random, 

Stride(2) and Stride(4) 

runsim2.sh Same as above, but for 3 Senders, 5 Senders and 7 Senders 

runbatch.sh 
Bash script using GNU parallel to run multiple simulations at the same time, 

for Random, Stride(2) and Stride(4) 

runbatch2.sh Same as above, but for 3 Senders, 5 Senders and 7 Senders 

rproc.sh 
Bash script to process simulation results and generate statistics, for Random, 

Stride(2) and Stride(4) 

rproc2.sh Same as above, but for 3 Senders, 5 Senders and 7 Senders 

netgoodput.m MATLAB script to estimate the best-case improvement (Fig. 1.6) 

genplots.m 
MATLAB script to make plots from simulation output, for Random, Stride(2) 

and Stride(4) (Figs. 5.11-5.13) 

genplots2.m Same as above, but for 3 Senders, 5 Senders and 7 Senders (Figs. 5.14-5.17) 

cwndplot.m MATLAB script to plot traced TCP congestion window sizes (Fig. 5.10) 

avgcalc.m MATLAB script to calculate average values over 20 simulation runs 

drcalc.mw Maple program to plot transfer finish time for 2 paths (Fig. 4.3)  

ncs_2paths.mw Maple program to plot packet disorder for 2 paths (Figs. 4.3-4.4) 

ncs_4paths.mw Maple program to plot packet disorder for 4 paths (Fig. 4.6) 

oprcalc.mw Maple program to plot the oblivious performance ratios (Fig. 5.1) 

ft43load.mw Maple program to analyze the oblivious performance ratios (Table 5.2) 

ns3bfsmod.diff Diff file showing our changes to ns-3 NIx-Vector BFS code to achieve RLB 
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