
www.manaraa.com

University of Iowa University of Iowa

Iowa Research Online Iowa Research Online

Theses and Dissertations

Spring 2017

Multipath approaches to avoiding TCP Incast Multipath approaches to avoiding TCP Incast

Lin Song
University of Iowa

Follow this and additional works at: https://ir.uiowa.edu/etd

 Part of the Electrical and Computer Engineering Commons

Copyright © 2017 Lin Song

This dissertation is available at Iowa Research Online: https://ir.uiowa.edu/etd/6859

Recommended Citation Recommended Citation
Song, Lin. "Multipath approaches to avoiding TCP Incast." PhD (Doctor of Philosophy) thesis, University of
Iowa, 2017.
https://doi.org/10.17077/etd.5vtx-z1li

Follow this and additional works at: https://ir.uiowa.edu/etd

 Part of the Electrical and Computer Engineering Commons

https://ir.uiowa.edu/
https://ir.uiowa.edu/etd
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F6859&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F6859&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.17077/etd.5vtx-z1li
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F6859&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F6859&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

MULTIPATH APPROACHES TO AVOIDING TCP INCAST

by

Lin Song

A thesis submitted in partial fulfillment of the

requirements for the Doctor of Philosophy
degree in Electrical and Computer Engineering

in the Graduate College of
The University of Iowa

May 2017

Thesis Supervisor: Associate Professor Mark S. Andersland

www.manaraa.com

Copyright by

LIN SONG

2017

All Rights Reserved

www.manaraa.com

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Lin Song

has been approved by the Examining Committee
for the thesis requirement for the Doctor of Philosophy
degree in Electrical and Computer Engineering at the
May 2017 graduation.

Thesis Committee: ___________________________________
 Mark S. Andersland, Thesis Supervisor

 Er-Wei Bai

 Mona K. Garvin

 Jon G. Kuhl

 Hantao Zhang

www.manaraa.com

 ii

To my wife Min and my parents

www.manaraa.com

 iii

ACKNOWLEDGMENTS

This journey of my Ph.D. at The University of Iowa has been a long and grueling

one. I would not have been able to complete it without the help of so many people to whom

I am indebted.

First of all, I would like to thank my advisor, Dr. Mark S. Andersland, for all his

guidance and support throughout my Ph.D. study. His expertise, vision and patient

guidance helped shape my thinking and will continue to benefit my future career. He helped

me get through a lot of hard times and I learned so many things from him both academically

and personally. I could not have come this far without his excellent mentorship.

To my committee members, Dr. Er-Wei Bai, Dr. Mona K. Garvin, Dr. Jon G. Kuhl

and Dr. Hantao Zhang, thank you all for your time, effort, valuable feedback and insightful

comments on my dissertation.

I would like to give special thanks to Dr. Er-Wei Bai and my former advisor Dr.

Ray P.S. Han, for their support, encouragement and guidance since I began my studies at

The University of Iowa. Sincere acknowledgement goes to ECE department secretaries

Catherine Kern and Dina Blanc for their kind help during my long Ph.D. journey.

My life in Iowa City during my Ph.D. journey was made much better thanks to all

my friends. I will not name all of them because I am in fear of accidentally leaving someone

out. But thank you all for being friends with me and having a wonderful time together.

Most of all thanks are to my family: my wife Min Li and my parents Dr. Guojun

Song and Junxia Wang, for their enduring love, immense patience and support, both

emotionally and financially, without which it is impossible for me to go this far. Words

cannot express my gratitude and love for them.

www.manaraa.com

 iv

ABSTRACT

TCP was conceived to ensure reliable node-to-node communication in moderate-

bandwidth, moderate-latency, WANs. As it is now a mature Internet standard, it is the

default connection-oriented protocol in networks built from commodity components,

including Internet data centers. Data centers, however, rely on high-bandwidth, low-

latency networks for communication. Moreover, their communication patterns, especially

those generated by distributed applications such as MapReduce, often take the form of

synchronous multi-node to node bursts. Under the right conditions, the network switch

buffer overflow losses induced by these bursts confuse TCP’s feedback mechanisms to the

point that TCP throughput collapses. This collapse, termed TCP Incast, results in gross

underutilization of link capacities, significantly degrading application performance.

Conventional approaches to mitigating Incast have focused on single-path

solutions, for instance, adjusting TCP’s receive windows and timers, modifying the

protocol itself, or adopting explicit congestion notifications. This thesis explores

complementary multi-path approaches to avoiding Incast’s onset. The principal idea is to

use the regularity and high connectivity of typical data center networks, such as the

increasingly popular fat-tree topology, to better distribute multi-node to node bursts across

the available paths, thereby avoiding the switch buffer overflows that induce TCP Incast.

The thesis’s main contributions are: (1) development of new oblivious, multi-path,

routing schemes for fat-tree networks, (2) derivation of relations between the schemes and

Incast’s onset, and (3) investigation of a novel “front-back” approach to minimizing the

packet reordering introduced by multipath routing. Formal analyses are focused on relating

schemes’ worst-case loading of certain network resources – expressed as oblivious

www.manaraa.com

 v

performance ratios (OPRs) – to Incast’s onset. Potential benefits are assessed through ns-3

simulations on fat-trees under a variety of communication patterns. Results indicate that

over a variety of experimental conditions, the proposed schemes reduce the incidence of

TCP Incast compared to standard routing schemes.

www.manaraa.com

 vi

PUBLIC ABSTRACT

The transmission control protocol (TCP) is the principle standard governing the

reliable exchange of messages in the Internet. Originally conceived for application in wide

area computer networks (WANs) encompassing large geographic areas operating at

moderate speeds, it faces new challenges in highly localized, high-speed, data center

networks supporting newly ubiquitous Internet services such as Internet search and social

networking. The challenge is that messaging in these networks often occurs in large,

synchronous many-to-one bursts in which many computers simultaneously respond to a

single computer’s query with parts of the query’s answer. Under the right conditions, these

simultaneous responses overload network switches, resulting in a steep decline in the TCP

data rate. This decline, termed TCP Incast, significantly degrades application performance,

impacting customer experience.

Conventional approaches to mitigating Incast have focused on single-path

solutions, in which all messages in a stream follow a single network path to the destination.

This thesis explores complementary multi-path approaches to avoiding Incast’s onset. The

principal idea is to use the regularity and high connectivity of typical data center networks,

such as the increasingly popular fat-tree architecture, to better distribute messages across

the available paths, thereby avoiding the network switch overloads that induce TCP Incast.

Potential benefits are assessed through simulations. Results indicate that over a variety of

experimental conditions, the proposed schemes reduce the incidence of TCP Incast

compared to standard message passing schemes.

www.manaraa.com

 vii

TABLE OF CONTENTS

LIST OF TABLES ... ix

LIST OF FIGURES ...x

CHAPTER

 1 INTRODUCTION ...1

1.1 Background and Motivation ...1

1.1.1 The Data Center Incast Problem ...1
1.1.2 Newer Data Center Topologies with Multiple Paths4
1.1.3 The Fat-Tree Architecture ...5
1.1.4 Oblivious Routing vs. Adaptive Routing ..7

1.2 Related Work ..7
1.3 Key Idea ..11
1.4 Estimation of Best-Case Improvement ...12
1.5 Summary of Our Contributions ..15

 2 MULTIPATH ROUTING FOR DATA CENTER NETWORKS17

2.1 What Causes Incast? – A Brief Investigation ...17
2.2 Multipath Routing via Dynamic NIx-Vectors ..18

2.2.1 What is a NIx-Vector ..18
2.2.2 Details of Proposed Algorithm ..19

2.3 Virtual Table-Based Multipath Routing ...21
2.3.1 Algorithm Description ...21
2.3.2 Example: Dual IPv4/IPv6 Routing ..21

2.4 Irregular Traffic Extensions ..24
2.5 Conclusions...25

 3 BRIDGING THE PROPOSED SCHEMES TO INCAST.....................................26

3.1 TCP Incast and Flow Loss Rate ..26
3.2 Switch Load and Flow Loss Rate ...28
3.3 Reduced Switch Load under Proposed Schemes ..31

3.3.1 Fat-Tree Properties ..31
3.3.2 Fat-Tree Routing: Definitions ...33
3.3.3 Formal Analysis ..37

3.4 Conclusions...50

 4 THE FRONT-BACK ALGORITHM AND ITS PERFORMANCE
EVALUATION ..51

4.1 Reordering Avoidance: The Front-Back Algorithm51
4.2 Integration with Multipath Routing ..54
4.3 Comparison with Existing Algorithms ...56
4.4 Further Development – Generalization to N-paths60

4.4.1 How the Generalization Works ...60
4.4.2 Comparison with Existing Algorithms ..62

4.5 Conclusions...64

www.manaraa.com

 viii

 5 PERFORMANCE ANALYSIS ...65

5.1 The Oblivious Performance Ratio (OPR) ...65

5.1.1 Definitions of the OPR ..65
5.1.2 Analysis on the OPR ...67

5.2 Traffic Patterns and Analysis ..69
5.2.1 Typical Incast Traffic Patterns ..69
5.2.2 Worst Case Patterns ..72

5.3 Validation by Simulations on the ns-3 Platform ...80
5.3.1 Simulation Setup ...81
5.3.2 Sample Outputs from Simulation ..87
5.3.3 Addressing the Incast Problem ..89
5.3.4 Performance Study ..90

5.4 Conclusions...97

 6 CONCLUSIONS AND POSSIBLE EXTENSIONS ...98

6.1 Summary of Research ...98
6.2 Possible Extensions ..98

APPENDIX SIMULATION SOURCE CODE AND SCRIPTS103

REFERENCES ..104

www.manaraa.com

 ix

LIST OF TABLES

Table

2.1 NIx-Vector creation example. ...19

3.1 Lower and upper bounds for the maximum switch load under different routing
schemes. ..48

3.2 Comparison of baseload normalized maximum switch loads under different
routing schemes. ...48

5.1 Traffic matrix Stride(4) on the 4-port fat-tree FT(4, 3). ...79

5.2 Maple evaluation results for comparing different routing schemes’ oblivious
performance ratios ..80

5.3 Parameters used in our ns-3 simulations. ..81

5.4 Sample output from simulations for Normal Routing. ...87

5.5 Sample output from simulations for Multipath Routing via Dynamic
NIx-Vectors. ...88

www.manaraa.com

 x

LIST OF FIGURES

Figure

1.1 A simplified data center Incast model. ...2

1.2 TCP Incast collapse on a 48-node cluster. ..2

1.3 A traditional data center topology...4

1.4 A FT(4, 3) 4-pod fat-tree topology, with the multiple paths between 010 and 201
highlighted. ...5

1.5 ECMP load balancing. ..8

1.6 Estimated best-case improvement to throughput. ...13

2.1 (a) Pseudocode of original BFS, (b) Our modified BFS algorithm to achieve
RLB. ..20

2.2 Our setup of static routing for IPv4 (top) and IPv6 (bottom).22

2.3 Bipartite graph for finding the maximum-load traffic pattern.24

3.1 Comparison of the split model to Incast simulation results, with the simulation
conditions overlaid. ...28

3.2 A simple fat-tree FT(2, 2) with 2 nodes and 3 switches. ..49

3.3 An example fat-tree FT(4, 2) with 8 nodes and 6 switches.49

3.4 An example fat-tree FT(4, 3) with 16 nodes and 20 switches.50

4.1 An illustration of the 2-path Front-Back Algorithm’s operation.52

4.2 Front-Back Algorithm architecture. ..55

4.3 Packet Disorder and Transfer Finish Time as functions of throughput estimation
error for Front-Back and Divide2. ..58

4.4 Packet Disorder as a function of data size for Front-Back and Divide2.59

4.5 An illustration of the N-path Front-Back Algorithm’s operation.61

4.6 Packet Disorder as a function of (a) throughput estimation error and (b) data size
for Front-Back and Divide4. ...63

5.1 Comparison of the oblivious performance ratios (switch) on FT(m, 3), for routing
schemes MDNVR, MDNVRk (k=2 and 4), DNVR and NR.68

5.2 A typical TCP Incast network setting, with one client requesting data from
multiple servers through synchronized reads..70

www.manaraa.com

 xi

5.3 An example FT(4, 3) fat-tree network. ...75

5.4 Traffic matrix decomposition for FT(4, 3). ..75

5.5 Traffic matrix decomposition for (a) Stride(2) and (b) Stride(4).76

5.6 Our ns-3 simulation topology. ..82

5.7 Path selection by different schemes in our simulation..83

5.8 Traffic matrices for Stride(2) (left) and Stride(4) (right). ...85

5.9 Traffic matrices for 3 Senders (top left), 5 Senders (top right) and 7 Senders
(bottom). ...85

5.10 Illustration of the effectiveness of proposed schemes on alleviating Incast.89

5.11 Comparison of average flow completion time and throughput for Stride(4).91

5.12 Comparison of average flow completion time and throughput for Random.91

5.13 Comparison of average flow completion time and throughput for Stride(2).92

5.14 Comparison of average flow completion time and throughput for 3 Senders.94

5.15 Comparison of average flow completion time and throughput for 5 Senders.94

5.16 Comparison of average flow completion time and throughput for 7 Senders.95

5.17 Comparison of average flow completion time and throughput for 7 Senders,
with 1ms RTO instead of the normal 200ms RTO. ..96

6.1 Some state-of-the-art data center topologies...99

www.manaraa.com

1

CHAPTER 1

INTRODUCTION

The TCP “Incast” problem is significant for data centers. It causes data transfers to

miss their deadlines, degrades customer experience and eventually impacts revenue.

Conventional approaches to overcoming this problem are focused on single-path solutions,

e.g., adjusting TCP’s receive windows and timers, modifying the protocol itself, or

adopting explicit congestion notifications. Today’s newer data center topologies allow for

multiple paths between nodes. In this dissertation, we develop new oblivious, multi-path,

routing schemes for fat-tree networks to alleviate the Incast problem. In addition, we derive

relations between the schemes and Incast’s onset, and investigate a novel “front-back”

approach to minimizing the packet reordering introduced by multipath routing.

1.1 Background and Motivation

1.1.1 The Data Center Incast Problem

Nowadays, with fast growth of the Internet and its increased popularity, large

companies such as Google and Microsoft rely on Internet data centers to provide important

services like search and social collaboration to their customers. Many applications

deployed in these data centers require significant network bandwidth. For example,

implementations of the MapReduce [1] programming model, such as Apache Hadoop [2],

rely on the shuffling of large amounts of data among data center nodes. On the other hand,

these applications often have strict latency requirements. During a web search request, for

instance, the client’s queries are simultaneously sent to multiple backend servers, whose

www.manaraa.com

2

responses are then aggregated and processed. Typical deadlines range from 10 to 100ms,

and those not received in time are discarded.

Figure 1.1: A simplified data center Incast model from [3].

Figure 1.2: TCP Incast collapse on a 48-node cluster from [4].

Most data centers use TCP for inter-node communication. When, as in Figure 1.1,

simultaneous data transfers from multiple processing nodes to a single receiving node

overfill network switch buffers, the resulting intense packet loss may lead to TCP timeouts

www.manaraa.com

3

long enough (100s of milliseconds or more) to collapse throughput. This drastic reduction

of throughput, termed Incast, causes data transfers to miss their deadlines, affecting the

quality of results, and degrading customers’ experiences.

From a user’s perspective, Incast is caused by the typical “barrier-synchronized

request workload” in data center applications such as web search and clustered storage. In

this type of workload, each data block is striped over multiple servers. A client node sends

simultaneous requests to these servers, which then respond with a fragment of the data

block. Traffic in the network is highly synchronized due to multiple servers responding to

the client at the same time. This intense, synchronized traffic overflows network switch

buffers, resulting in severe packet loss and long TCP timeouts. Because the client must

wait for all fragments in the current data block to arrive before sending a new batch of

requests, all transfers are halted during the timeout, leading to a steep decline in perceived

application-level throughput (goodput).

Shown in Figure 1.2 is a TCP Incast collapse observed on a 48-node cluster. We

see that as the number of concurrent servers sending data to the receiver increases, there is

a drastic drop in overall application throughput, eventually degrading to less than 5% of

the initial value.

Incast was first observed by Andersen et al. in their INCAST project [5, 6]. It was

subsequently studied by Chen et al. [3, 7]. In today’s data centers, Incast communication

patterns can be observed in many popular applications, such as cluster-based storage

systems [8, 9], Big Data [10], data analytics [11-13] and Apache Hadoop [2].

To address the Incast problem, researchers have proposed different approaches,

including application layer approaches [14-16], modifying the TCP protocol [4, 17-19],

www.manaraa.com

4

adjusting the TCP congestion or receiver window [20, 21], use of congestion notification

[22-25], centralized flow scheduling [26, 27], and use of multiple network paths. We will

discuss multipath approaches in more detail in Section 1.2.

1.1.2 Newer Data Center Topologies with Multiple Paths

Although data centers can be built using specialized hardware with custom

communication protocols such as Infiniband [28] and Myrinet [29], the high costs of such

solutions limit their adoption. Many data centers choose to instead use off-the-shelf

commodity products such as Ethernet based routers and switches. Figure 1.3 shows a

traditional data center topology where multiple hosts are connected to an access switch1

and multiple access switches are then connected to an aggregation switch, etc. In such

topologies, there exist very few to no alternate paths between any two hosts.

Figure 1.3: A traditional data center topology from [30].

1 We use the term switch throughout the rest of this dissertation to refer to devices capable of both layer 2
switching and layer 3 routing.

www.manaraa.com

5

The evolution of data center topologies allows for multiple paths between each

source-destination node pair. Recently, researchers have proposed many new topologies,

e.g., the fat-tree [31], VL2 [32], DCell [33], BCube [34], Monsoon [35] and CamCube

[36]. The fat-tree is popular in today’s data centers. It was proposed in 1985 by Leiserson

in [37] and is a special instance of the “Clos topology” [38] invented by Charles Clos for

telephone networks in 1953.

1.1.3 The Fat-Tree Architecture

The fat-tree architecture, originally proposed in 1985 by Leiserson in [37], is an

increasingly popular choice in today’s newer data centers due to its full bisection

bandwidth, and has been widely deployed. Typical dimensions of fat-trees used in data

centers involve two- or three-tiers of switches plus one-tier of processing nodes.

Figure 1.4: A FT(4, 3) 4-pod fat-tree topology from [31], with the
multiple paths between 010 and 201 highlighted.

www.manaraa.com

6

Definition 1.1 [39]. A fat-tree is an m-port n-tree 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), built from 𝑛𝑛 tiers of m-port

switches (𝑚𝑚 a power of 2), with the following characteristics:

1. The height of 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) is 𝑛𝑛 + 1.

2. 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) consists of 2 × �𝑚𝑚
2
�
𝑛𝑛

 nodes and (2𝑛𝑛 − 1) × �𝑚𝑚
2
�
𝑛𝑛−1

 m-port switches.

We label the nodes in 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) as 𝑃𝑃(𝑝𝑝 = 𝑝𝑝0𝑝𝑝1 … 𝑝𝑝𝑛𝑛−1), where 𝑝𝑝 ∈ {0,1, … ,𝑚𝑚 −

1} × �0,1, … ,𝑚𝑚
2
− 1�

𝑛𝑛−1
. The switches are labeled as 𝑆𝑆𝑆𝑆 < 𝑤𝑤 = 𝑤𝑤0𝑤𝑤1 …𝑤𝑤𝑛𝑛−2, 𝑙𝑙 > ,

where 𝑙𝑙 ∈ {0,1, … ,𝑛𝑛 − 1} is the level of the switch and

𝑤𝑤 ∈ �
�0,1, … ,

𝑚𝑚
2
− 1�

𝑛𝑛−1
 , if 𝑙𝑙 = 0

{0,1, … ,𝑚𝑚− 1} × �0,1, … ,
𝑚𝑚
2
− 1�

𝑛𝑛−2
 , if 𝑙𝑙 ∈ {1,2, … ,𝑛𝑛 − 1}

. (1. 1)

An m-port 3-tree 𝐹𝐹𝐹𝐹(𝑚𝑚, 3) has 4 sub-fat-trees (“pods”), with two layers of switches

in each: lower-level “edge” switches and upper-level “aggregation” switches, as shown in

Figure 1.4. The four paths between 010 and 201 are highlighted. Each edge switch connects

𝑚𝑚
2

 processing nodes. At the top level, there are �𝑚𝑚
2
�
2
 “core” switches interconnecting the

𝑚𝑚 pods. In 𝐹𝐹𝑇𝑇(𝑚𝑚, 3), there are 2 × �𝑚𝑚
2
�
3
 hosts and 5 × �𝑚𝑚

2
�
2
 switches in total.

One major advantage of fat-trees is the high degree of path diversity. For an m-port

3-tree, there are �𝑚𝑚
2
�
2

 equal-cost paths between each source-destination pair, each

corresponding to a core switch. Routing between two processing nodes in different sub-

fat-trees consists of two phases: from the source node to a core switch (“upward”), and

from the core switch to the destination node (“downward”). During the first phase, each

switch can select from its 𝑚𝑚
2

 different next hops. However, once a core switch is selected,

the second phase is deterministic.

www.manaraa.com

7

1.1.4 Oblivious Routing vs. Adaptive Routing

Oblivious routing refers to routing schemes that are designed without knowledge

of the actual traffic demands of a network. For every source-destination node pair, a fixed

route, or a randomized rule for choosing routes, is selected in advance, irrespective of how

much traffic any pair sends or is expected to send. In contrast, adaptive routing schemes

permit the route taken by packets to be affected by the routes taken by other packets in the

network. Consequently, the routes selected for source-destination node pairs may change

dynamically depending on real-time network traffic conditions.

Because adaptive routing is dependent on real-time traffic conditions, it requires

accurate estimates of network traffic flows, which can be difficult to obtain, especially in

dynamic environments. Considering these difficulties, recent routing research has focused

on identifying good oblivious schemes because they are significantly easier to implement.

By designing a good oblivious routing scheme, we can ensure the network is robust to

traffic pattern changes. In this dissertation, all our proposed schemes are oblivious schemes.

1.2 Related Work

Can we use the multiple paths available in newer data centers to better balance

traffic and thereby avoid Incast? A number of researchers have proposed multipath

approaches to load balancing. These include Valiant load balancing (VLB) [32, 35, 40],

equal-cost multi-path routing (ECMP) [31], adaptive load balancing (ALB) [41],

centralized flow scheduling [42], static VLANs [43-46] and multipath TCP (MPTCP) [47-

49] and variants AMTCP [50], MMPTCP [51] and MPTCP-L [52]. Recent surveys of

multipath transmission include [53, 54]. Far fewer researchers have considered using these

www.manaraa.com

8

approaches to combat Incast. These include EW-MPTCP [55], CONGA [56], XMP [57]

and FUSO [58]. In the remainder of this subsection we briefly describe the key schemes.

Figure 1.5: ECMP load balancing from [59].

Equal-cost multi-path routing (ECMP) [31] configures ECMP-enabled switches

with multiple packet forwarding paths. An arriving packet for which there exists multiple

candidate paths is forwarded based on a hash of selected fields in its header (“5-tuple”:

source and destination IPs, protocol type, source and destination ports). Thus, the traffic

load is split across multiple paths. Figure 1.5 shows an example. Traffic from source to

destination is routed via three equal-cost paths (all with cost 5), marked by red, blue and

black arrows, respectively.

In ECMP, network traffic is split based on flow-granularity, to avoid the problem

of packet reordering which degrades TCP throughput. However, all flows may have

different timing and/or durations, hence load imbalance can occur in the network which

creates hot-spots and leads to poor resource utilization. For example, a hash collision is

www.manaraa.com

9

possible [42] between large, long-lived flows (i.e. they are routed on the same link),

creating a bottleneck and resulting in poor load balancing.

Valiant load balancing (VLB) [32, 35, 40] is a method closely related to ECMP. It

tries to achieve load-balancing by first routing each packet from a source switch to a set of

randomly selected intermediate switches, which then forward it to the destination. To avoid

packet reordering, VLB is usually performed at the flow-level [32] rather than packet-level.

The former is largely equivalent to ECMP.

Centralized flow scheduling has also been proposed by researchers [42]. The

scheduler assigns large flows to less congested paths, and may reassign existing flows to

increase overall throughput in the network. However, it has been shown that the scheduler

does not scale, due to its inherent overhead [48]. To more efficiently use a centralized

scheduler, other researchers proposed to treat differently flows with short duration, and

flows which are long-running and carry significant amounts of data [60-63]. They termed

these “mice” and “elephants”, respectively. Different techniques have been proposed for

detecting the “elephants”, either from the end hosts or from the switches in the network.

Multipath TCP (MPTCP) [47-49] is an extension for TCP, that allows the use of

multiple paths for resilience and load balancing. Published in 2013 as an experimental

IETF RFC [49], MPTCP splits each connection into multiple regular TCP subflows, on

which traffic is multiplexed based on perceived congestion. A complex formula [64] is

used to couple the congestion window increase between subflows. Under certain cases,

MPTCP outperforms regular TCP, achieving a higher throughput. However, by routing

traffic over multiple paths, MPTCP could induce a high degree of packet reordering, which

results in additional delay before in-order data can be delivered to the applications. A

survey of TCP packet reordering issues under multipath can be found in [65].

www.manaraa.com

10

EW-MPTCP [55] is an extension to MPTCP that mitigates Incast collapse through

a new congestion control algorithm. Besides the native coupled congestion control [64]

performed by MPTCP, each subflow in EW-MPTCP is allowed to perform additional

congestion control by dynamically adjusting the congestion window based on the number

of responding servers. The goal is to improve fairness at the shared bottleneck links, where

multiple TCP subflows in MPTCP could compete with a single path TCP flow.

Congestion Aware Balancing (CONGA) [56] is a network-based distributed load

balancing scheme for data centers. Each TCP flow is first divided into flowlets, then

allocated to different paths based on real-time congestion information aggregated from

multiple switches. However, CONGA relies on global knowledge of congestion in the

network, which is difficult to achieve without significant overhead.

Explicit Multipath (XMP) [57] congestion control aims to balance throughput with

latency in data center networks. It uses MPTCP and has two components: the Buffer

Occupancy Suppression (BOS) algorithm and the Traffic Shifting (TraSh) algorithm. The

former employs Explicit Congestion Notification (ECN) [22] to control latency for small

flows, while the latter shifts traffic among subflows to improve throughput of large flows.

Fast Multi-path Loss Recovery (FUSO) [58] utilizes multiple paths in data center

networks for transport loss recovery, with a focus on reducing the TCP flow completion

time (FCT). In the event of potential packet loss on one subflow within the multi-path

transport, recovery packets are immediately sent over another subflow with lower packet

loss and has space in its congestion window. This is very different from our proposed

schemes, because in FUSO, the multiple paths are only used to transmit recovery packets.

www.manaraa.com

11

The current techniques have either proved too simple to be effective at alleviating

Incast, or, in the case of the MPTCP coupled congestion control, too complex to be

implemented and could induce packet reordering. What should we do?

1.3 Key Idea

We use network regularity to overcome Incast through multipath routing. Multipath

routing [66] is a routing technique that can be used to alleviate network congestion through

load balancing. Traffic load is distributed across the network by utilizing the existing

multiple routes for routing traffic from a source to a destination. According to the “resource

pooling principle” [67], this can effectively shift traffic away from congested links and

increase overall network utilization.

Our approaches differ from existing ones in that:

1. They provide a low overhead means to reduce the likelihood of Incast, due to the

simple routing setup that reduces packet processing time.

2. They avoid packet reordering and minimize context switches by design.

3. They are scalable and well suited for large networks, because of their compact

storage of routing information.

So far, we have investigated two specific approaches:

1. Multipath Routing via Dynamic NIx-Vectors.

2. Virtual Table-Based Multipath Routing (specifically, Dual IPv4/IPv6 Routing).

A key problem with all multipath approaches is packet reordering. We minimize

reordering via a novel multipath scheduling algorithm we term the Front-Back Algorithm.

www.manaraa.com

12

1.4 Estimation of Best-Case Improvement

We can estimate the potential gain in perceived application-level throughput

(goodput) attainable through Incast avoidance using throughput models developed in [3]

and [7]. To begin assume, as in [7], a fixed fragment workload, i.e., all nodes’ responses to

queries are of fixed size, and assume that TCP’s delayed ACK feature is enabled. Let 𝐺𝐺𝑆𝑆𝐼𝐼𝐼𝐼

and 𝐺𝐺𝑆𝑆𝐼𝐼𝐼𝐼 denote the throughput of 𝑆𝑆 senders in Incast-susceptible (IS) and Incast-free (IF)

networks, respectively, and define:

D – total amount of data to be sent (100 blocks of 256 KB each)

L – total transfer time of the workload without any TCP re-transmission timeout

(RTO) events

R – number of RTO events during the transfer

r – value of the minimum RTO (i.e. 𝑅𝑅𝑅𝑅𝑂𝑂𝑚𝑚𝑚𝑚𝑚𝑚) timer value, set to 200ms

I – inter-packet wait time

From [7], the 𝑆𝑆-sender throughput in an Incast susceptible network can be approximately

modeled as

𝐺𝐺𝑆𝑆𝐼𝐼𝐼𝐼 =
𝑆𝑆 × 𝐷𝐷

𝐿𝐿 + (𝑅𝑅 × 𝑟𝑟) . (1. 2)

Moreover, from [7], L is related to I and D through

𝐿𝐿 =
𝐷𝐷

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ
𝑆𝑆

+ �
𝐷𝐷

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
� × 𝐼𝐼 , (1. 3)

where Bandwidth is assumed to be 1Gbps (= 125,000,000 bytes/s) in the authors’ testbed,

and averageMSS the average maximum segment size, is set to 1500 bytes.

Fitting a piece-wise quadratic polynomial to [7]’s empirical data yields S to R relation

www.manaraa.com

13

𝑅𝑅 = �0.679 𝑆𝑆2 − 4.04 𝑆𝑆 + 5.5 , 𝑆𝑆 ≤ 8
 −0.0859 𝑆𝑆2 + 4.24 𝑆𝑆 − 11.1 , 𝑆𝑆 > 8

 . (1. 4)

Similarly, fitting a piece-wise quadratic polynomial to [7]’s empirical data one finds that

𝐼𝐼 = �0.0988 𝑆𝑆2 − 0.485 𝑆𝑆 + 0.786 , 𝑆𝑆 ≤ 8
−0.00433 𝑆𝑆2 + 0.237 𝑆𝑆 + 1.63 , 𝑆𝑆 > 8

 . (1. 5)

Figure 1.6: Estimated best-case improvement to throughput. (a) Predicted throughput w/
Incast, using Eq. 1.6. (b) Ideal throughput w/o Incast, using Eq. 1.7.

(c) Estimated % improvement to throughput, using Eq. 1.8. (d) Same as (c),
except using empirical data.

www.manaraa.com

14

Substituting I into Eq. 1.3, and L and R into Eq. 1.2, we find

𝐺𝐺𝑆𝑆𝐼𝐼𝐼𝐼 = �

26214400 𝑆𝑆
1.86 𝑆𝑆2 − 9.07 𝑆𝑆 + 14.84

 , 𝑆𝑆 ≤ 8

26214400 𝑆𝑆
−0.0929 𝑆𝑆2 + 5.20 𝑆𝑆 + 26.3

 , 𝑆𝑆 > 8
 . (1. 6)

To calculate the ideal throughput when Incast is avoided, we use Eq. 1 from [3].

𝐺𝐺𝑆𝑆𝐼𝐼𝐼𝐼 =
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 × 𝑆𝑆
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ

 × 𝑆𝑆 , (1. 7)

where blockSize is 256KB, and RTT is set to 2ms which is the observed value in the authors’

testbed in [7]. We can then compute

𝐺𝐺𝑆𝑆𝐼𝐼𝐼𝐼 − 𝐺𝐺𝑆𝑆𝐼𝐼𝐼𝐼

𝐺𝐺𝑆𝑆𝐼𝐼𝐼𝐼
=

⎩
⎨

⎧
7812500 × (1.86 𝑆𝑆2 − 9.28 𝑆𝑆 + 14.6)

16384 𝑆𝑆 + 15625
 , 𝑆𝑆 ≤ 8

 −
78125 × (9.29 𝑆𝑆2 − 499 𝑆𝑆 − 2607)

16384 𝑆𝑆 + 15625
 , 𝑆𝑆 > 8

 . (1. 8)

The estimated throughput in the Incast-susceptible and Incast-free cases, and the

possible percent improvement seen in the absence of Incast, are plotted in Figure 1.6.

Figure 1.6 (a) shows predicted throughput across S senders under Incast, using Eq. 1.6.

The ideal throughput without Incast is shown in Figure 1.6 (b) by applying Eq. 1.7. Figure

1.6 (c) illustrates the estimated percent of improvement to throughput, using Eq. 1.8.

Figure 1.6 (d) was generated without using the piece-wise fitted equations for calculating

I and R, but instead use the empirically observed data from Figure 16 in [7].

From these plots, we observe that in the best case, there can be more than 3000%

maximum improvement to the throughput across S senders. While a 3000% improvement

may seem high, given the drastic impact Incast has on throughput, as shown in Figure 1.2,

www.manaraa.com

15

it is not unreasonable. The decrease in improvement starting from S = 9 (note that we still

have more than 1500% improvement at S = 25) can be explained as follows: Because every

flow must traverse the “bottleneck” link at the receiver (as shown in Figure 1.1), the ideal

aggregated throughput is capped by the bandwidth on that link (1Gbps). On the other hand,

the throughput under Incast improves slightly with increasing number of concurrent

senders. This is the reason behind the decrease we see in the figure.

1.5 Summary of Our Contributions

In this dissertation, we use network regularity to overcome Incast through multipath

routing. In Chapter 2, we develop two novel oblivious, multi-path, routing schemes for fat-

tree networks. These include Multipath Routing via Dynamic NIx-Vectors and Virtual

Table-Based Multipath Routing, with Dual IPv4/IPv6 Routing as a specific example. Our

scalable approaches provide a low overhead means to reduce the likelihood of Incast. We

conclude with a discussion of irregular traffic extensions for the proposed schemes.

In Chapter 3, we establish a relationship between the proposed multipath routing

schemes and the avoidance of Incast’s onset. First, we note, using Kulkarni’s model of

synchronized, many-to-one TCP flows, that reducing flow loss probabilities delays the

onset of Incast. Next, we observe, from well-known results on switch buffer sizing, that

flow loss probabilities can be reduced by reducing switch loads. Finally, we show by

formal analysis that the worst-case loads – the loads most responsible for TCP Incast – are

reduced by our proposed routing schemes.

A key problem, faced by all approaches to routing packets over multiple paths, is

packet reordering. In Chapter 4, we investigate a novel “front-back” approach to

minimizing the packet reordering introduced by multipath routing. We establish the

www.manaraa.com

16

optimality of an algorithm implementing our front-back approach for 2 paths, and then

briefly discuss how this Front-Back Algorithm could be integrated into existing protocols.

Its performance is then contrasted to other proposed algorithms for combating multipath

reordering, with examples highlighting its advantages. We conclude with a discussion of

the Front-Back Algorithm’s N-path extension (N > 2) and examples illustrating the

extension’s potential advantages.

Our performance analysis in Chapter 5 begins with an investigation of the proposed

routing schemes. We focus on their worst-case loading of certain network resources –

expressed as oblivious performance ratios (OPRs). We then explore typical Incast traffic

patterns in data center networks, and describe a novel method of traffic matrix

decomposition to help visually illustrate and classify traffic patterns. Finally, we assess the

potential benefits of our schemes through ns-3 simulations on fat-trees under a variety of

traffic conditions. Results indicate that over a variety of experimental conditions, the

proposed schemes reduce the incidence of TCP Incast compared to standard routing

schemes.

www.manaraa.com

17

CHAPTER 2

MULTIPATH ROUTING FOR DATA CENTER NETWORKS

In this chapter, we investigate the root cause and key points related to TCP Incast,

and develop two novel oblivious, multi-path, routing schemes for fat-tree networks. We

conclude with a discussion of irregular traffic extensions for the proposed schemes.

2.1 What Causes Incast? – A Brief Investigation

The problem of data center Incast was first observed by Andersen et al. in their

INCAST project [5, 6]. It arises in high bandwidth, low latency, networks when

simultaneous data transfers from multiple senders to a single receiver overflow a bottleneck

switch buffer. The ensuing intense synchronous packet loss may induce excessively large

TCP re-transmission timeouts (on the order of hundreds of milliseconds) that reduce

perceived application-level throughput (goodput) to a fraction of available bandwidth.

Thus, data transfers miss their deadlines, affecting quality of the result, degrading customer

experience and eventually impacting revenue.

The root causes for data center Incast include synchronized many-to-one request

patterns (in applications such as MapReduce [1]) and the high bandwidth, low latency

Ethernet links causing a mismatch of TCP’s retransmission timeout and increased penalty.

This is further aggravated by the highly synchronous nature of data transfer in data center

applications, leading to a drastic drop in network or application throughput.

Three key features of data centers make them particularly susceptible to Incast.

First, data center operators typically rely on commodity switches to reduce costs. These

switches usually have limited buffer space. Second, data transfer patterns in data center

www.manaraa.com

18

networks are usually “bursty”, in the form of barrier-synchronized request workloads. For

example, in the “MapReduce” application, simultaneous requests from a master node are

periodically sent to multiple slave nodes. Upon receiving these requests, the slave nodes

respond with data they have or perform calculations. Third, to maintain data integrity, the

request/response process is usually synchronous with tight deadlines, i.e. the next batch of

requests cannot start until all slave nodes have replied to the current batch of requests.

Therefore, if there is switch buffer overflow during a batch, the system will wait for the

uncompleted responses and delaying processing of the next batch and thereby decreasing

performance.

2.2 Multipath Routing via Dynamic NIx-Vectors

To take advantage of the multiple paths, better balance traffic and reduce the

likelihood of data center Incast, we have developed two novel routing schemes, Multipath

Routing via Dynamic NIx-Vectors and Virtual Table-Based Multipath Routing. To the best

of our knowledge, no similar schemes have been proposed in the literature.

2.2.1 What is a NIx-Vector

The original NIx-Vector concept was introduced by Riley et al. in 2001 [68]. NIx-

Vector (neighbor-index vector) Routing is a form of source routing. It stores, very

compactly in the packet header, a complete source-to-destination routing path. Because of

its efficient route storage, NIx-Vector Routing is well-suited for large network topologies.

As packets are being generated at a source node for transmission, a routing cache

is first searched for a previously built NIx-Vector for the destination. If none exists, the

NIx-Vector is built by performing a breadth-first search (BFS), and then storing a neighbor-

www.manaraa.com

19

index for each hop along the path indicating which outgoing interface should be used to

route the packet. At the time of routing, the appropriate neighbor-index is extracted from

the NIx-Vector by switches at each hop, which then transmit the packet through the

indicated interface. This process repeats until the destination is reached.

Table 2.1: NIx-Vector creation example from [68].

Table 2.1 [68] shows an example for NIx-Vector creation. In the table, Ci is the

number of neighbors at each hop; Bi equals ⌊log2 𝐶𝐶𝑖𝑖⌋, the number of bits needed for storing

routing decision; NIx specifies the neighbor-index chosen for packet routing; NVU is the

used counter; and NIx-Vector lists the NIx-Vector generated with that hop’s information

appended.

2.2.2 Details of Proposed Algorithm

We modify NIx-Vector routing for use in data center networks. In the original NIx-

Vector concept, if multiple shortest paths were found during the breadth-first search (BFS),

www.manaraa.com

20

only the first path is used to compute the NIx-Vector. To take advantage of the multiple

paths available in newer data center topologies such as the fat-tree, we modify the said BFS

algorithm, to return multiple (or multiple sets of) shortest paths on demand. In other words,

our modified algorithm is flexible. For example, we can achieve randomized load

balancing (RLB) if the shortest path used to compute the NIx-Vector is randomly selected

from all shortest paths discovered by BFS. A comparison of this algorithm with the original

BFS is shown in Figure 2.1.

Figure 2.1: (a) Pseudocode of original BFS from [69],
(b) Our modified BFS algorithm to achieve RLB.

Compared to normal table-based routing, where only one path is used, the new

scheme allows better load balancing within the data center and hence, helps to alleviate the

Incast problem.

To enable multipath capabilities while avoiding packet reordering, we combine

Dynamic NIx-Vector Routing with a novel Front-Back Algorithm, to be discussed in

Chapter 4.

www.manaraa.com

21

2.3 Virtual Table-Based Multipath Routing

2.3.1 Algorithm Description

We also investigate an approach we term Virtual Table-Based Multipath Routing,

which takes advantage of multiple network layer stacks installed on a switch to balance

traffic.

This approach has some resemblance to “ensemble routing” [43, 44], which

exploits multiple virtual local area networks (VLANs) to route traffic. However, our

approach has several significant differences:

1. It uses static routing tables which do not have the overhead of VLAN packet tags.

2. It avoids the costs of VLAN creation and management.

3. Unlike VLAN which operates in Layer 2, the data link layer of the network stack,

our scheme operates in Layer 3, the network layer.

2.3.2 Example: Dual IPv4/IPv6 Routing

Dual IPv4/IPv6 Routing can serve as an example of Virtual Table-Based Routing.

With the rapid adoption of IPv6 in recent years, many switches come with support for both

IPv4 and IPv6, and companies are rapidly deploying IPv6 in their infrastructures. By

setting up different routing tables for IPv4 and IPv6, we can obtain two different paths for

each source-destination pair.

To enable multipath capabilities while avoiding packet reordering, we combine

Dual IPv4/IPv6 Routing with the Front-Back Algorithm, to be discussed in Chapter 4.

Our setup of dual IPv4/IPv6 static routing is inspired by the source modulo k (s-

mod-k) [70, 71] and destination modulo k (d-mod-k) [39, 72-74] routing schemes for system

www.manaraa.com

22

area networks. To illustrate how these schemes work, we use the network in Figure 1.4 as

an example.

Figure 2.2: Our setup of static routing for IPv4 (top) and IPv6 (bottom).

In d-mod-k, during the first stage of routing (edge switch to aggregation switch),

packets with consecutive destinations are to be shuffled between the two up-links. To do

this, the least significant bit (LSB) of destination node label is checked, and the packet is

forwarded to the switch with the same LSB in its label. During the second stage of routing

www.manaraa.com

23

(aggregation switch to core switch), the second least significant bit (SLSB) of destination

node label is checked, with a similar forwarding process as in the first stage.

The s-mod-k scheme only differs from d-mod-k in one respect: it checks source

nodes’ labels instead of destination nodes’ labels. Researchers have shown that s-mod-k

and d-mod-k have similar performance [75].

We set up dual IPv4 and IPv6 static routing as shown in Figure 2.2. Thickened lines

denote the default upward forwarding route for each switch for IPv4 and IPv6, respectively.

Compared to the s-mod-k and d-mod-k schemes, our approach has the following advantages:

1. Due to the use of static routing tables, the switches are freed from the tasks of

constantly checking source/destination addresses and matching LSB or SLSB bits

for every packet. Instead, they can now be installed with a single default upward

forwarding route. This saves time and greatly lowers processing overhead.

2. Our approach avoids traffic imbalance in the cases that the load from each node is

different.

To illustrate point 2 above, assume that the loads from nodes 000, 001, 010 and 011,

in Figure 1.4, are 8, 4, 2 and 10, respectively. Now look only at the leftmost sub-fat-tree.

Under our scheme, the loads on the upward ports of switches <00, 2> and <01, 2> are 6, 6,

6 and 6 (left to right). Likewise, the loads on switches <00, 1> and <01, 1> are 6, 6, 6 and

6. Under the s-mod-k routing scheme, the loads on the upward ports of switches are less

balanced, namely, 8, 4, 2 and 10, on switches <00, 2> and <01, 2> and 8, 2, 4 and 10 on

switches <00, 1> and <01, 1>.

www.manaraa.com

24

2.4 Irregular Traffic Extensions

Applications deployed in real data centers may have very different communication

patterns (flow timing and length), leading to irregular traffic within the network. If we

make the additional assumption of irregular network traffic, how should our proposed

schemes change?

Figure 2.3: Bipartite graph for finding the
maximum-load traffic pattern from [76].

In this scenario, we expect to change the algorithm for path selection in our

proposed schemes. The techniques that we will discuss in Chapter 3 for analyzing the

incurred switch load can be utilized to pre-calculate the load on each switch in the network

under different traffic patterns and routing policies. With this information, we can adjust

path selection to optimize for the worst-case pattern within the given set of traffic patterns.

Specifically, for the proposed scheme Multipath Routing via Dynamic NIx-Vectors, instead

www.manaraa.com

25

of randomly picking a path from the pool of available shortest paths, we now set the

probability that a switch is to be selected based on this information.

Going in the reverse direction, what if we have already selected a routing scheme,

and want to know its performance under different traffic patterns? The authors of [76]

derived a procedure for computing the worst-case traffic pattern, i.e., the pattern that

generates the maximum load over all links. To find the pattern that gives the highest load

on a link 𝑐𝑐, the first step is to generate a bipartite graph as shown in Figure 2.3. In the graph,

vertices for every source node are placed on the left, and those for the destination nodes

are placed on the right. Each edge is labeled γc(s,d) denoting the load on switch 𝑐𝑐 by unit

traffic from 𝑠𝑠 to 𝑑𝑑. By finding a maximum-weight matching of the graph, we obtain the

permutation that induces maximum load on 𝑐𝑐. This procedure is repeated for all links in

the network to find the worst-case traffic pattern.

2.5 Conclusions

In this chapter, we first highlighted the root cause and key points related to TCP

Incast. These include the synchronized many-to-one request patterns in data centers, the

commodity network switches with limited buffer space, and the high bandwidth, low

latency Ethernet links causing a mismatch of the TCP timeout.

To take advantage of the existing multiple paths in newer data center topologies

such as the fat-tree, we developed two novel oblivious, multi-path routing schemes

Multipath Routing via Dynamic NIx-Vectors and Virtual Table-Based Multipath Routing,

with Dual IPv4/IPv6 Routing as a specific example. Our scalable approaches provide a low

overhead means to reduce the likelihood of Incast. We concluded this chapter with a

discussion of irregular traffic extensions for the proposed schemes.

www.manaraa.com

26

CHAPTER 3

BRIDGING THE PROPOSED SCHEMES TO INCAST

In this chapter, we establish a relationship between the proposed multipath routing

schemes and the avoidance of Incast’s onset. First, we note, using Kulkarni’s model of

synchronized, many-to-one TCP flows, that reducing flow loss probabilities delays the

onset of Incast. Next, we observe, from well-known results on switch buffer sizing, that

flow loss probabilities can be reduced by reducing switch loads. Finally, we show by

formal analysis that the worst-case loads – the loads most responsible for TCP Incast – are

reduced by our proposed routing schemes.

3.1 TCP Incast and Flow Loss Rate

TCP Incast is typically defined as the drastic drop in perceived application-level

throughput (goodput), observed when bursts of synchronized many-to-one TCP flows

overfill network switch buffers, resulting in packet losses that confuse TCP’s congestion

control mechanisms to the point that timeouts become excessive. Data center transfers are

particularly susceptible to Incast because their networks exhibit high bandwidth with low

latency, and most single-node requests spawn synchronized multi-node replies from large

numbers of nodes.

One of the earliest explicit models of the relationship between packet loss and

perceived application layer throughput in the presence of large numbers of competing

synchronized flows was proposed by Kulkarni in his 2012 dissertation [77]. Kulkarni

identifies two principle causes of Incast. The first, which he terms Anterior Block Transfer

Timeout (ABTT), arises when, due to TCP’s short-term unfairness, some synchronized,

www.manaraa.com

27

many-to-one block transfers finish earlier than others. As the transfers are synchronized,

those that finish early must wait for the others to finish. TCP, seeing the bandwidth freed

by the early finishers’ waits, increases the transmission windows of those flows that remain

active to sizes that could not be sustained had the early finishers’ flows transmissions not

been suspended. Consequently, when the next round of block transfers begins, the buffers

in some bottleneck switch are overwhelmed by these outsized window transmissions,

resulting in substantial packet losses. Should any flow lose all of the packets in its

transmission window, a timeout ensues that, again due to block synchronization, halts all

flows’ transmissions until the timeout expires and the packets are successfully

retransmitted, thereby collapsing throughput.

The second key cause, termed Intermediate Block Transfer Timeout (IBTT), arises

when a sender responding to a many-to-one query does not receive enough duplicate

ACKs, after a packet loss, for TCP to trigger an immediate resend of the missing packets.

Instead, the sending flow’s TCP waits one timeout period before resending the packets and

then resets the sender’s transmission window to one. Once again, all flows’ transmissions

are halted until the timeout expires and the last packets in the block are successfully

retransmitted, collapsing throughput. Kulkarni shows that IBTT is the principle cause of

Incast when the number of involved flows is small while ABTT predominates otherwise.

More importantly for our purposes, he demonstrates, via an analytic extension of Padhye

et al.’s well-known single-flow TCP model [78] to the case of multiple synchronized flows

that, as one might intuitively expect, the onset of Incast due to both mechanisms is highly

correlated to flow packet loss, and consequently, that strategies that reduce packet loss,

such as increasing switch buffer size, delay the onset of Incast. Figure 3.1, from [77]

www.manaraa.com

28

illustrates the fidelity of the model compared to ns-2 simulation under the conditions

superimposed on the model.

Figure 3.1: Comparison of the split model to Incast simulation results, with the
simulation conditions overlaid. [77]

Next, we use established results from switch buffer sizing theory to show that we

can reduce the loss rate of TCP flows in fat-tree networks by reducing the switch loads.

3.2 Switch Load and Flow Loss Rate

The topic of switch buffer sizing has been an area of active research since the early

1990s. It is of interest to us because it can be used to size buffers and avoid Incast given

www.manaraa.com

29

worst case bounds on switch buffers. In a classic 1994 paper [79], Villamizar and Song

demonstrated that, although WAN TCP throughput can be collapsed by sufficiently large

reductions in queuing capacity, such collapses can be avoided when the random early

detection queueing discipline (RED) is employed, and queuing capacities are maintained

at or above links’ bandwidth-delay products. This results in the widely-used guideline that

each link should have a buffer size of 𝐵𝐵 = 𝑅𝑅𝑅𝑅𝑅𝑅������ × 𝐶𝐶, where 𝑅𝑅𝑅𝑅𝑅𝑅������ is the average round-trip

time of flows through that link, and 𝐶𝐶 is the link’s data rate.

In [80], Morris analyzed the effect of passing large numbers of TCP flows through

switches. Packet loss rates approaching 50% were observed, causing noticeable delays for

users. He proposed that instead of allocating only one round-trip time of buffering, switches

should be provisioned to have buffer space proportional to the number of active flows. In

a subsequent paper [81], he proposed a model aimed at explaining as well as predicting

loss rates for TCP traffic, and introduced a new algorithm for switch buffering, he termed

“flow-proportional queuing (FPQ).” Under FPQ, TCP is controlled by changing the queue

length in the switch in proportion to the number of active TCP connections. It is claimed

that FPQ can accommodate heavy TCP traffic without causing high loss rates.

In 2004, Appenzeller et al. [82], proposed the “Stanford model” for switch buffer

sizing. Their main claim was that the widely-used guideline that each link should have a

buffer of 𝐵𝐵 = 𝑅𝑅𝑅𝑅𝑅𝑅������ × 𝐶𝐶 no longer holds for backbone switches. They showed that when

large numbers of multiplexed TCP connections are in their congestion avoidance phases,

they tend to become un-synchronized and hence require smaller buffers. As the standard

deviation of aggregate load decreases with √𝑛𝑛, their new guideline was 𝐵𝐵 = (𝑅𝑅𝑅𝑅𝑅𝑅������ ×

𝐶𝐶)/√𝑛𝑛 , where n is the number of flows (short-lived and long-lived) sharing the target link.

www.manaraa.com

30

The authors claimed that use of the new rule allowed buffer size requirements to be reduced

by up to 99% with no noticeable change in throughput.

A critical assumption of the model is that TCP flows have varying round-trip times,

which lead to de-synchronization as they traverse common links. Without this assumption,

the flows can become synchronized and behave like a single “big” TCP flow, which then

again requires a buffer size of 𝐵𝐵 = 𝑅𝑅𝑅𝑅𝑅𝑅������ × 𝐶𝐶. Because the RTT is largely fixed in data

center networks, the above paper’s results are not applicable to our work.

More recently, a series of papers by Dovrolis et al. made further contributions to

buffer sizing. In [83], they raised concerns about the “Stanford model”, pointing out that

while setting 𝐵𝐵 = (𝑅𝑅𝑅𝑅𝑅𝑅������ × 𝐶𝐶)/√𝑛𝑛 does not lead to significant link utilization loss when a

link carries many TCP flows, it can cause excessively high loss rates (up to 5%~15%) for

these flows. This results in TCP re-transmissions and throughput drops, as well as

significant variability in throughput and latency.

The paper distinguished between “long” and “short” TCP flows. Short flows spend

all their time in the slow-start phase, while long flows follow the linear “saw tooth” pattern

in the phase of congestion avoidance. An important observation made in [83] is that one

cannot classify flows simply by looking at their sizes. When the network is uncongested,

even a big-size flow can keep staying in slow-start phase. On the other hand, in congested

networks, short flows can go into the congestion avoidance phase early and spend most of

their time there. The authors also claimed that those long flows which are bottlenecked at

links other than the target link should be excluded from the n flows used in calculating

bandwidth in the Stanford model. Flows that are primarily limited by the TCP receiver’s

advertised window should also be excluded.

www.manaraa.com

31

An additional important result in [83] is the authors’ expression of the loss rate 𝑝𝑝

experienced by TCP flows at a bottleneck link as a function,

𝑝𝑝 =
(0.87 𝑁𝑁)2

�𝐶𝐶 × 𝑇𝑇𝑝𝑝 + 𝐵𝐵�
2 , (3. 1)

of the buffer size 𝐵𝐵, where 𝑁𝑁 denotes the number of flows, 𝑇𝑇𝑝𝑝, the round-trip propagation

delay, and 𝐶𝐶, the link’s capacity. In other words, the loss rate 𝑝𝑝 increases with the square

of the number of flows 𝑁𝑁 at the bottleneck link. Furthermore, for fixed 𝑁𝑁, the loss rate 𝑝𝑝

decreases slowly with increasing buffer size 𝐵𝐵, following a power law. Thus, one can

reduce the loss rate 𝑝𝑝 of TCP flows by reducing the traffic load on network switches, or

the number of flows N traversing each switch in the fat-tree network.

3.3 Reduced Switch Load under Proposed Schemes

In this section, we first outline important properties of fat-trees, and define key fat-

tree routing terminology. We then show, via formal analysis that the worst-case switch

loads – the loads most responsible for TCP Incast – are reduced by our proposed routing

schemes.

3.3.1 Fat-Tree Properties

m-port n-trees 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), fat-trees constructed from n-tiers of m-port switches,

have the following properties:

Property 1 [84]. 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) contains 𝑚𝑚 , m-port n-1-trees (sub-fat-trees denoted by

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚,𝑛𝑛 − 1)), 𝑚𝑚 × 𝑚𝑚
2

, m-port n-2-trees (sub-fat-trees denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚,𝑛𝑛 −

2)), …, and 𝑚𝑚 × �𝑚𝑚
2
�
𝑛𝑛−2

, m-port 1-trees (sub-fat-trees denoted by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚, 1)).

www.manaraa.com

32

Property 2 [84]. Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚, 𝑡𝑡) be the smallest sub-fat-tree in 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) that contains

processing nodes 𝑎𝑎 and 𝑏𝑏. Then there exist �𝑚𝑚
2
�
𝑡𝑡−1

 different shortest paths from 𝑎𝑎 to 𝑏𝑏. If

such a sub-tree does not exist, there are �𝑚𝑚
2
�
𝑛𝑛−1

 different shortest paths from 𝑎𝑎 to 𝑏𝑏. In this

case, 𝑎𝑎 and 𝑏𝑏 are in different top level sub-fat-trees 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚,𝑛𝑛 − 1).

Property 3 [84]. In 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) , when there exist �𝑚𝑚
2
�
𝑥𝑥

 different shortest paths from

processing node 𝑠𝑠 to processing node 𝑑𝑑, each of the level 𝑛𝑛 − 1 − 𝑡𝑡, 0 ≤ 𝑡𝑡 ≤ 𝑥𝑥, up/down

links that carry traffic from 𝑠𝑠 to 𝑑𝑑 is used by �𝑚𝑚
2
�
𝑥𝑥−𝑡𝑡

 shortest paths.

Property 4. In 𝐹𝐹𝐹𝐹(𝑚𝑚, 𝑛𝑛), when there exist �𝑚𝑚
2
�
𝑥𝑥
 different shortest paths from processing

node 𝑠𝑠 to processing node 𝑑𝑑, each of the level 𝑛𝑛 − 1 − 𝑡𝑡, 0 ≤ 𝑡𝑡 ≤ 𝑥𝑥, switches that carry

traffic from 𝑠𝑠 to 𝑑𝑑 is used by �𝑚𝑚
2
�
𝑥𝑥−𝑡𝑡

 shortest paths.

Property 5 [84]. In 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), a level 𝑡𝑡, 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, up link carries traffic from at most

�𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

 source nodes. A level 𝑡𝑡 down link carries traffic to at most �𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

 destination nodes.

Property 6. In 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), a 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 (“core”) switch carries traffic from at most 2 × �𝑚𝑚
2
�
n

source nodes. A 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡, 0 < 𝑡𝑡 ≤ 𝑛𝑛 − 1, switch carries traffic from/to at most �𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

source/destination nodes in that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚, 𝑡𝑡).

Proof: By construction, 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) has 2 × �𝑚𝑚
2
�
n

 processing nodes. In the worst case,

traffic from all nodes passes through a single 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 switch. On the other hand, each

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 (0 < 𝑡𝑡 ≤ 𝑛𝑛 − 1) switch has 𝑚𝑚
2

 “up” and “down” links, respectively. Thus, from

fat-tree Property 5, each switch carries traffic from/to at most �𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

× 𝑚𝑚
2

= �𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

source/destination nodes in that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚, 𝑡𝑡). □

www.manaraa.com

33

3.3.2 Fat-Tree Routing: Definitions

To meaningfully compare routing schemes, it is essential to have metrics. Given

that Incast is a worst-case phenomenon, it natural to look for worst case metrics. In this

section, we extend [84]’s approach to assessing routing schemes’ effects on worst case link

loads to that of assessing routing schemes’ effects on worst case switch loads. Since in fat-

trees all links have the same capacity, comparing maximum link loads is equivalent to

comparing maximum link utilizations.

We begin by reviewing traffic and routing characterizations, and link load bounds,

from [84]. Throughout we assume that all fat-tree links are full-duplex, with the same

capacity in both the up (away from the processing nodes) and down (toward the processing

nodes) channel directions.

Definition 3.1 [84]. Matrix 𝑇𝑇𝑇𝑇 with entries 𝑡𝑡𝑡𝑡𝑖𝑖,𝑗𝑗 ≥ 0, 0 ≤ 𝑖𝑖 ≤ 𝑁𝑁 − 1 and 0 ≤ 𝑗𝑗 ≤ 𝑁𝑁 − 1,

is said to be a traffic matrix for fat-tree 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) , when 𝑁𝑁 = 2 × �𝑚𝑚
2
�
n

 and 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖

specifies the amount of traffic sent from node 𝑖𝑖 to node 𝑗𝑗.

To lower bound the worst-case link load induced by a traffic matrix 𝑇𝑇𝑇𝑇, note first

that the total traffic sent from any node 𝑖𝑖 is ∑ 𝑡𝑡𝑡𝑡𝑖𝑖,𝑗𝑗𝑗𝑗 , and the total traffic received at 𝑖𝑖 is

∑ 𝑡𝑡𝑡𝑡𝑗𝑗,𝑖𝑖𝑗𝑗 . Because 𝑖𝑖 connects to the fat-tree via a single local full-duplex link, it follows that

the maximum load on 𝑖𝑖’s local link is 𝑚𝑚𝑎𝑎𝑎𝑎�∑ 𝑡𝑡𝑡𝑡𝑖𝑖,𝑗𝑗𝑗𝑗 ,∑ 𝑡𝑡𝑡𝑡𝑗𝑗,𝑖𝑖𝑗𝑗 �. Consequently, the worst-

case link load induced by 𝑇𝑇𝑇𝑇 over all links’ up and down channels under any routing

policy is lower bounded by maximum over all nodes’ link’s local up and down channels.

This bound motivates the following definition.

www.manaraa.com

34

Definition 3.2 [84]. The base load imposed on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) by traffic matrix 𝑇𝑇𝑇𝑇 is

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) = 𝑚𝑚𝑚𝑚𝑚𝑚
0≤𝑖𝑖≤𝑁𝑁−1

�𝑚𝑚𝑚𝑚𝑚𝑚 �� 𝑡𝑡𝑡𝑡𝑖𝑖,𝑗𝑗
𝑗𝑗

,� 𝑡𝑡𝑡𝑡𝑗𝑗,𝑖𝑖
𝑗𝑗

�� . (3. 2)

The actual worst-case link load induced in a fat-tree by traffic matrix 𝑇𝑇𝑇𝑇 depends

on the fat-tree’s routing scheme.

Definition 3.3 [84]. A routing 𝑟𝑟 for fat-tree 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) is defined by

(1) A set of paths 𝑃𝑃𝑖𝑖,𝑗𝑗 = �𝑃𝑃𝑖𝑖,𝑗𝑗1 ,𝑃𝑃𝑖𝑖,𝑗𝑗2 , … ,𝑃𝑃𝑖𝑖,𝑗𝑗
�𝑃𝑃𝑖𝑖,𝑗𝑗��, between each source-destination (SD)

pair (𝑖𝑖, 𝑗𝑗) in 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛),

(2) A path weighting 𝑓𝑓𝑖𝑖,𝑗𝑗 = �𝑓𝑓𝑖𝑖,𝑗𝑗𝑘𝑘 �𝑘𝑘 = 1,2, … , �𝑃𝑃𝑖𝑖,𝑗𝑗��, ∑ 𝑓𝑓𝑖𝑖,𝑗𝑗𝑘𝑘𝑘𝑘 = 1, specifying the fraction

of traffic to be routed via each path.

Note that this definition encompasses both single and multipath routing schemes. When

�𝑃𝑃𝑖𝑖,𝑗𝑗� > 1 with no 𝑓𝑓𝑖𝑖,𝑗𝑗𝑘𝑘 = 1, 𝑟𝑟 is said to be a multipath routing. Otherwise it is single path

routing.

Given traffic matrix 𝑇𝑇𝑇𝑇 and routing 𝑟𝑟, we assume the contribution of path 𝑃𝑃𝑖𝑖,𝑗𝑗𝑘𝑘

traffic to link 𝑙𝑙 ’s up or down channel’s load under 𝑟𝑟 is 𝑡𝑡𝑡𝑡𝑖𝑖,𝑗𝑗 × 𝑓𝑓𝑖𝑖,𝑗𝑗𝑘𝑘 when the channel

belongs to path 𝑃𝑃𝑖𝑖,𝑗𝑗𝑘𝑘 , and 0 otherwise. This is the standard linear network assumption for

oblivious routing [76]. Hence, the load imposed on channel 𝑙𝑙𝐷𝐷, 𝐷𝐷 ∈ {𝑢𝑢𝑢𝑢,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑}, of link 𝑙𝑙

of 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) by routing 𝑟𝑟 is

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑙𝑙𝐷𝐷, 𝑟𝑟,𝑇𝑇𝑇𝑇) = � 𝑡𝑡𝑡𝑡𝑖𝑖,𝑗𝑗 × 𝑓𝑓𝑖𝑖,𝑗𝑗𝑘𝑘

𝑖𝑖,𝑗𝑗,𝑘𝑘 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑙𝑙𝐷𝐷∈𝑃𝑃𝑖𝑖,𝑗𝑗
𝑘𝑘

; (3. 3)

and the load imposed by routing 𝑟𝑟 on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛)’s most congested link channel, termed the

maximum link load in [84], is

www.manaraa.com

35

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑙𝑙∈𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

�max�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑙𝑙𝑢𝑢𝑢𝑢, 𝑟𝑟,𝑇𝑇𝑇𝑇�, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑟𝑟,𝑇𝑇𝑇𝑇)��. (3. 4)

Similarly, given traffic matrix 𝑇𝑇𝑇𝑇 and routing 𝑟𝑟, the contribution of path 𝑃𝑃𝑖𝑖,𝑗𝑗𝑘𝑘 traffic

to switch 𝑠𝑠’s load under 𝑟𝑟 is 𝑡𝑡𝑡𝑡𝑖𝑖,𝑗𝑗 × 𝑓𝑓𝑖𝑖,𝑗𝑗𝑘𝑘 when 𝑠𝑠 belongs to path 𝑃𝑃𝑖𝑖,𝑗𝑗𝑘𝑘 , and 0 otherwise.

Hence, the load imposed on switch 𝑠𝑠 of 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) by routing 𝑟𝑟 is

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠, 𝑟𝑟,𝑇𝑇𝑇𝑇) = � 𝑡𝑡𝑡𝑡𝑖𝑖,𝑗𝑗 × 𝑓𝑓𝑖𝑖,𝑗𝑗𝑘𝑘

𝑖𝑖,𝑗𝑗,𝑘𝑘 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑠𝑠∈𝑃𝑃𝑖𝑖,𝑗𝑗
𝑘𝑘

; (3. 5)

and the load imposed by routing 𝑟𝑟 on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛)’s most congested switch is

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠∈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒

{𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠, 𝑟𝑟,𝑇𝑇𝑇𝑇)}. (3. 6)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑀𝑀) is the worst-case link load incurred by 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) under routing 𝑟𝑟

given traffic matrix 𝑇𝑇𝑇𝑇 . The min-max link-optimal routing 𝑟𝑟 for this traffic matrix,

minimizes 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇).

Definition 3.4 [84]. The min-max optimal (minimum worst case) link load imposed on

𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) by traffic matrix 𝑇𝑇𝑇𝑇 is

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

{𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇)}. (3. 7)

Similarly, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇) is the worst-case switch load incurred by 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛)

under routing 𝑟𝑟 given traffic matrix 𝑇𝑇𝑇𝑇. The min-max switch-optimal routing 𝑟𝑟 for this

traffic matrix minimizes 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇).

Definition 3.5. The min-max optimal (minimum worst case) switch load imposed on

𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) by traffic matrix 𝑇𝑇𝑇𝑇 is

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

{𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇)}. (3. 8)

www.manaraa.com

36

Intuitively, because a switch’s load must be at least as large as the load of any

attached link, the min-max optimal switch load bounds the min-max optimal link load.

Lemma 3.1. Given 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), with 𝑚𝑚 a power of 2 and 𝑛𝑛 ≥ 1, for all 𝑇𝑇𝑇𝑇,

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) ≤ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) ≤ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × 2 × �
𝑚𝑚
2
�
𝑛𝑛

. (3. 9)

Proof: Note first that as 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) contains 2 × �𝑚𝑚
2
�
𝑛𝑛

 processing nodes, no switch can

have a load of more than 2 × �𝑚𝑚
2
�
𝑛𝑛

× 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) . So, 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) ≤

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × 2 × �𝑚𝑚
2
�
𝑛𝑛

. Next, fix 𝑇𝑇𝑇𝑇 and let 𝑟𝑟 denote the routing that achieves

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) . Then, by 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) ’s, 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) ’s, and 𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇𝑇𝑇) ’s

definitions,

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇)

≥ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇)

≥ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇)

≥ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇),

 (3.10)

where the first inequality follows from the fact that 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇) ≥

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠, 𝑟𝑟,𝑇𝑇𝑇𝑇) ≥ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇) for the switch 𝑠𝑠 attached to the link achieving

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇), with equality when, for instance, 𝑇𝑇𝑇𝑇 specifies that traffic be sent from a

single node to a single node. □

 In the next section, we derive worst-case switch load bounds for specific routing

schemes, and in the process, significantly tighten Lemma 3.1’s upper bound.

www.manaraa.com

37

3.3.3 Formal Analysis

In this section, we derive bounds on the worst case switch load for our proposed

schemes, and compare these bounds to those obtained for standard schemes.

The routing schemes (and variants) to be considered include:

1. Normal Routing, which corresponds to the single-path IPv4 table-based scheme,

2. Dynamic NIx-Vector Routing, which is a NIx-vector routing variant that uses our

modified BFS algorithm to select one path from the multiple available shortest

paths, and

3. Multipath Routing via Dynamic NIx-Vectors, which extends NIx-vector routing to

the multipath case using the Front-Back Algorithm (introduced in Chapter 4) to

distribute traffic across the shortest paths.

3.3.3.1 Normal Routing

Theorem 3.1. Given Normal Routing (𝑁𝑁𝑁𝑁) on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), with 𝑚𝑚 a power of 2 and 𝑛𝑛 ≥ 1,

for all 𝑇𝑇𝑇𝑇, the load on any 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switch, 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, satisfies

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊𝑡𝑡(𝑁𝑁𝑁𝑁,𝑇𝑇𝑇𝑇) ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × 2 × �
𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

. (3. 11)

Proof: Under Normal Routing all traffic between source nodes in different 𝑛𝑛 − 1 level sub-

fat-trees of fat-tree 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) passes through 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛)’s leftmost 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 switch. Hence

this switch is maximally loaded by 𝑇𝑇𝑇𝑇𝑇𝑇 under which all source nodes’ traffic is directed

towards 𝑛𝑛 − 1 level sub-fat-trees other than their own. By fat-tree Property 6, there are

2 × �𝑚𝑚
2
�
n
 source nodes in 𝐹𝐹𝐹𝐹(𝑚𝑚, 𝑛𝑛), and by Definition 3.2, each can send no more than

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) units of traffic. Hence inequality (3.11) holds for all 𝑇𝑇𝑇𝑇, when 𝑡𝑡 = 0,

www.manaraa.com

38

with equality when, for instance, 𝑇𝑇𝑇𝑇 specifies that each source node send one unit of

traffic to every source node outside of its 𝑛𝑛 − 1 level sub-fat-tree.

Similarly, under Normal Routing, all traffic between source nodes in a particular

𝑛𝑛 − 𝑡𝑡 level sub-fat-tree of 𝐹𝐹𝐹𝐹(𝑚𝑚, 𝑛𝑛), 1 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, and source nodes outside of this sub-

fat-tree, passes through this sub-fat-tree’s leftmost 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 switch (a 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switch of

𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛)). Hence this switch is maximally loaded by 𝑇𝑇𝑇𝑇𝑇𝑇 under which all of its source

nodes’ traffic is directed towards, or originates from, source nodes outside of its sub-fat-

tree. By fat-tree Property 6, there are �𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

 source nodes in each 𝑛𝑛 − 𝑡𝑡 level sub-fat-tree,

and by Definition 3.2, each can send and receive no more than 2 × 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) units

of traffic. Hence inequality (3.11) holds for all 𝑇𝑇𝑇𝑇, when 0 < 𝑡𝑡 ≤ 𝑛𝑛 − 1, with equality

when, for instance, 𝑇𝑇𝑇𝑇 specifies that each source node send one unit of traffic to every

source node outside of its 𝑛𝑛 − 𝑡𝑡 level sub-fat-tree. □

By Definition 3.2, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × 2 × �𝑚𝑚
2
�
𝑛𝑛

 is the largest traffic load that the

2 × �𝑚𝑚
2
�
𝑛𝑛

 source nodes in 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) can generate, and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × 2 × �𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

 is

the largest traffic load that the �𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

 source nodes in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚,𝑛𝑛 − 𝑡𝑡) can collectively

send and receive. Accordingly, (3.11) hold for all routings 𝑟𝑟 and all traffic matrices 𝑇𝑇𝑇𝑇.

Corollary 3.1. For all routings 𝑟𝑟 on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), with 𝑚𝑚 a power of 2 and 𝑛𝑛 ≥ 1, and for

all 𝑇𝑇𝑇𝑇, the load on any 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switch, 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, satisfies

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊𝑡𝑡(𝑟𝑟,𝑇𝑇𝑇𝑇) ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × 2 × �
𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

.□ (3. 12)

Note that since the bounds in (3.12) are tight for 𝑟𝑟 = 𝑁𝑁𝑁𝑁, 𝑁𝑁𝑁𝑁 is in fact a “worst case”

routing.

www.manaraa.com

39

3.3.3.2 Dynamic NIx-Vector Routing

In this section, we briefly investigate the min-max link and switch load performance

of single path Dynamic NIx-Vector Routing to establish benchmarks against which the

performance of our proposed Multipath Dynamic NIx-Vector Routing scheme can be

compared. We limit our analysis to 𝐹𝐹𝐹𝐹(𝑚𝑚, 2) and 𝐹𝐹𝐹𝐹(𝑚𝑚, 3) because optimal routing

schemes are known for these two cases and because these fat-tree types are adequate to

support most applications. An 𝐹𝐹𝐹𝐹(32, 3), for instance, can support 8192 processing nodes.

The following theorem, on which our results are based, is an immediate

consequence of Theorems 6 and 7 in [84].

Theorem 3.2 [84]. Given Dynamic NIx-Vector Routing (𝐷𝐷𝐷𝐷𝑉𝑉𝑉𝑉) on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), with m a

power of 2 and 𝑛𝑛 ∈ {2, 3},

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑇𝑇𝑇𝑇) ≤

⎩
⎨

⎧𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × ��
𝑚𝑚
2
� , if 𝑛𝑛 = 2

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) ×
𝑚𝑚
2

, if 𝑛𝑛 = 3
. (3. 13)

Proof: As outlined in Chapter 2, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 uses a modified BFS algorithm to dynamically

return shortest paths between all source nodes 𝑖𝑖 and 𝑗𝑗 in 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛). It is then free to assign

shortest paths to source-destination pairs in any desired demand oblivious fashion.

In Theorem 6 of [84] it is shown that in the case 𝑛𝑛 = 2, it is possible to assign

shortest paths to source-destination pairs in such a way that no link ever carries traffic to

or from more than ��𝑚𝑚
2
� source nodes. It is also shown that in the case 𝑛𝑛 = 3 it is possible

to assign shortest paths to source-destination pairs in such a way that no link ever carries

traffic to or from more than 𝑚𝑚
2

 source nodes. Under these 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 assignments it is

immediate that the maximum load experienced by fat-tree 𝐹𝐹𝐹𝐹(𝑚𝑚, 𝑛𝑛) satisfies (3.13) for

𝑛𝑛 = 2 and 𝑛𝑛 = 3. □

www.manaraa.com

40

Theorem 3.3. Given Dynamic NIx-Vector Routing (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), with 𝑚𝑚 a power

of 2 and 𝑛𝑛 ∈ {2, 3}, for all 𝑇𝑇𝑇𝑇, the load on any 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switch, 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, satisfies

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊𝑡𝑡(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑇𝑇𝑇𝑇) ≤

⎩
⎪
⎨

⎪
⎧𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × min���

𝑚𝑚
2
� , �

𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

� × 𝑚𝑚, if 𝑛𝑛 = 2

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × min �
𝑚𝑚
2

 , �
𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

� × 𝑚𝑚, if 𝑛𝑛 = 3
. (3. 14)

Proof: Fix 𝑇𝑇𝑇𝑇, let 𝑠𝑠 denote a switch that achieves 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑇𝑇𝑇𝑇) under 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,

and let 𝑙𝑙0, 𝑙𝑙1, . . . , 𝑙𝑙𝑚𝑚−1 denote the links attached to its 𝑚𝑚 ports. As all traffic that enters 𝑠𝑠

leaves 𝑠𝑠, the load on switch 𝑠𝑠 equals half the sum of the load on its links’ up and down

channels. Hence, by 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑇𝑇𝑇𝑇)’s definition, and (3.13),

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑇𝑇𝑇𝑇) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑇𝑇𝑇𝑇)

=
1
2
� �𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑙𝑙𝑝𝑝,𝑢𝑢𝑢𝑢,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑇𝑇𝑇𝑇� + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑙𝑙𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑇𝑇𝑇𝑇��
𝑚𝑚−1

𝑝𝑝=0

≤

⎩
⎪
⎨

⎪
⎧1

2
� �𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × ��

𝑚𝑚
2
� × 2� , if 𝑛𝑛 = 2

𝑚𝑚−1

𝑝𝑝=0

1
2
� �𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) ×

𝑚𝑚
2

× 2�
𝑚𝑚−1

𝑝𝑝=0

, if 𝑛𝑛 = 3

=

⎩
⎨

⎧𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × ��
𝑚𝑚
2
� × 𝑚𝑚, if 𝑛𝑛 = 2

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) ×
𝑚𝑚
2

× 𝑚𝑚, if 𝑛𝑛 = 3
.

 (3.15)

On the other hand, by Corollary 3.1, for 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1,

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊𝑡𝑡(𝑟𝑟,𝑇𝑇𝑇𝑇) ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × 2 × �
𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

. (3. 16)

Merging (3.15) and (3.16) we obtain (3.14). □

www.manaraa.com

41

3.3.3.3 Multipath Routing via Dynamic NIx-Vectors (using all paths)

The routing scheme Multipath Routing via Dynamic NIx-Vectors (using all paths)

(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) works as follows: Let 𝑋𝑋 be the number of shortest paths between a source-

destination node pair (𝑖𝑖, 𝑗𝑗) , and let these 𝑋𝑋 different shortest paths be 𝑃𝑃𝑖𝑖,𝑗𝑗1 ,𝑃𝑃𝑖𝑖,𝑗𝑗2 , … ,𝑃𝑃𝑖𝑖,𝑗𝑗𝑋𝑋 .

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 uses the Front-Back Algorithm (Chapter 4), to allocate the same amount of traffic

𝑓𝑓𝑖𝑖,𝑗𝑗1 = ⋯ = 𝑓𝑓𝑖𝑖,𝑗𝑗𝑋𝑋 = 1
𝑋𝑋

 , to each path.

Theorem 3.4. Given Multipath Routing via Dynamic NIx-Vectors (using all paths)

(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), with 𝑚𝑚 a power of 2 and 𝑛𝑛 ≥ 1, for all 𝑇𝑇𝑇𝑇,

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) = 𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇𝑇𝑇); (3. 17)

and the load on any switch satisfies

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × 𝑚𝑚. (3. 18)

Proof: Consider first (3.17). Our proof approach is adapted from [84]. Since, by Lemma

3.1, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) , it suffices to show that

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇). By fat-tree Property 3, for all source nodes 𝑖𝑖

and 𝑗𝑗 in 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) , shortest path traffic from 𝑖𝑖 to 𝑗𝑗 passes through at most �𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 link up-channels, 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1. By fat-tree Property 5, each of these channels

carries shortest path traffic from at most �𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

 source nodes 𝑖𝑖0, 𝑖𝑖1, . . . , 𝑖𝑖
�𝑚𝑚2 �

𝑛𝑛−1−𝑡𝑡
−1

.

Under 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 routing, traffic from each of these �𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

 nodes is uniformly

distributed across these �𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

 links. Hence, recalling that the total traffic departing

from source node 𝑖𝑖 under traffic matrix 𝑇𝑇𝑇𝑇 can be expressed as ∑ 𝑡𝑡𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖≠𝑗𝑗 , and that, by

www.manaraa.com

42

Definition 3.2, no link’s up-channel load can exceed 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇), we have, for all

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 link up channels 𝑙𝑙,

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑙𝑙,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) ≤ �
∑ 𝑡𝑡𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖≠𝑗𝑗

�𝑚𝑚2 �
𝑛𝑛−1−𝑡𝑡

�𝑚𝑚2 �
𝑛𝑛−1−𝑡𝑡

−1

𝑝𝑝=0

≤ �
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)

�𝑚𝑚2 �
𝑛𝑛−1−𝑡𝑡

�𝑚𝑚2 �
𝑛𝑛−1−𝑡𝑡

−1

𝑝𝑝=0

= 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇).

 (3.19)

Since, by 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) ’s symmetry, the same arguments hold for all 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 link down

channels, (3.17) follows from the definition 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇).

Consider next (3.18). Since, by Lemma 3.1, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) ≤ 𝑀𝑀𝑀𝑀𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇),

it suffices to establish the upper bound. Fix 𝑇𝑇𝑇𝑇 , let 𝑠𝑠 denote a switch that achieves

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) under 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅 , and let 𝑙𝑙0, 𝑙𝑙1, . . . , 𝑙𝑙𝑚𝑚−1 denote the links

attached to its 𝑚𝑚 ports. As all traffic that enters 𝑠𝑠 leaves 𝑠𝑠, the load on switch 𝑠𝑠 equals half

the sum of the load on its ports’ link’s up and down channels. Hence, by

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇)’s definition, and (3.17),

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇)

=
1
2
� �𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑙𝑙𝑝𝑝,𝑢𝑢𝑢𝑢,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇� + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑙𝑙𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇��
𝑚𝑚−1

𝑝𝑝=0

≤
1
2
� (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × 2)
𝑚𝑚−1

𝑝𝑝=0

= 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × 𝑚𝑚.□

 (3.20)

www.manaraa.com

43

As 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) is both lower bounded (by Lemma 3.1) and upper

bounded (by Theorem 3.4) by 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇), the following corollary is clear.

Corollary 3.2. Given 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), with 𝑚𝑚 a power of 2 and 𝑛𝑛 ≥ 1, for all 𝑇𝑇𝑇𝑇,

𝑀𝑀𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇).□ (3. 21)

Corollary 3.2 establishes that 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is the min-max link-optimal routing for

𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛). In fact, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is also a min-max switch-optimal routing. But showing this

takes a bit more effort.

To begin we note that both bounds in (3.18) are tight. To see this, consider first a

traffic matrix 𝑇𝑇𝑇𝑇1 that specifies that a single source node send traffic to another source

node within its smallest (1 level) sub-fat-tree. Under 𝑇𝑇𝑇𝑇1 the switch attached to these two

nodes load equals 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) while all other switches’ loads are zero. Hence

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇1) = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇1).

Consider next a traffic matrix 𝑇𝑇𝑇𝑇2 that specifies that each source node in 𝑛𝑛 − 1

level sub-fat-tree 𝑋𝑋 send one unit of traffic to the node in the same position in the adjacent

𝑛𝑛 − 1 level subtree (𝑋𝑋 + 1) mod 𝑚𝑚. As each node sends one unit of traffic they all send

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇2) . Under 𝑇𝑇𝑇𝑇2 with 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 routing, the 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇2) × 2 × �𝑚𝑚
2
�
𝑛𝑛

traffic generated by these 2 × �𝑚𝑚
2
�
𝑛𝑛

 nodes is uniformly distributed across the �𝑚𝑚
2
�
𝑛𝑛−1

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 switches hence 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊0(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇2) = (𝑏𝑏𝑏𝑏𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇𝑇𝑇2) × 2 × �𝑚𝑚
2
�
𝑛𝑛

)/

�𝑚𝑚
2
�
𝑛𝑛−1

= 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇2) × 𝑚𝑚 . Similarly, under 𝑇𝑇𝑇𝑇2 with 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 routing, the

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × 2 × �𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

 up and down traffic generated by the �𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

 nodes in each

𝑛𝑛 − 𝑡𝑡 level sub-fat-tree is uniformly distributed across �𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switches. Hence

www.manaraa.com

44

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊𝑡𝑡(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇2) = (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇2) × 2 × �𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

)/ �𝑚𝑚
2
�
𝑛𝑛−𝑡𝑡

=

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇2) × 𝑚𝑚, as was the case for the 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 switches. Thus

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇2) = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑑𝑑(𝑇𝑇𝑇𝑇2) × 𝑚𝑚.

The implication of having these distinct bounds is that the bounding arguments that

established 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀’s min-max link-optimality cannot be used to establish its min-max

switch optimality. Instead we demonstrate optimality by showing that for every 𝑇𝑇𝑇𝑇 ,

deviating from 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 can only increase a fat-tree’s maximum switch load.

Theorem 3.5. Given 𝐹𝐹𝐹𝐹(𝑚𝑚, 𝑛𝑛), with 𝑚𝑚 a power of 2 and 𝑛𝑛 ≥ 1, for all 𝑇𝑇𝑇𝑇,

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑊𝑊(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇). (3. 22)

Proof: Fix 𝑇𝑇𝑇𝑇 and let 𝑠𝑠 be a switch with 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) =

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇). By Definition 3.5, it suffices to show that

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑟𝑟,𝑇𝑇𝑇𝑇) ≥ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅,𝑇𝑇𝑇𝑇) for all 𝑟𝑟. (3. 23)

There are two cases. Suppose first that 𝑠𝑠 is a 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛 − 1 switch. Then since all paths

through 𝑠𝑠 link directly to a source node, all paths are unique. So no change in 𝑟𝑟 can reduce

𝑠𝑠’s switch load, and hence (3.23) holds. Suppose next that 𝑠𝑠 is a 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switch, 0 ≤ 𝑡𝑡 <

𝑛𝑛 − 1 , and let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚,𝑛𝑛 − 𝑡𝑡) denote the smallest sub-fat-tree containing 𝑠𝑠 . Under

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 routing all traffic between nodes 𝑖𝑖 and 𝑗𝑗 is evenly distributed among all paths

between 𝑖𝑖 and 𝑗𝑗, and hence by fat-trees symmetry, all 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switches, in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚, 𝑛𝑛 −

𝑡𝑡), along those paths. By superposition it follows that the aggregate traffic traversing

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚,𝑛𝑛 − 𝑡𝑡) is likewise equally distributed among all 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switches in

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚,𝑛𝑛 − 𝑡𝑡). But as this aggregate is fixed by 𝑇𝑇𝑇𝑇, any routing 𝑟𝑟 that decreases

switch 𝑠𝑠’s load increases the load of some other 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switch in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚, 𝑛𝑛 − 𝑡𝑡). So

once again (3.23) holds. □

www.manaraa.com

45

3.3.3.4 Multipath Routing via Dynamic NIx-Vectors (using ⌈𝑿𝑿/𝒌𝒌⌉ paths)

Theorem 3.5 establishes the min-max optimality of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, however,

routes over all shortest paths between nodes. When this is not possible but reduced switch

loads are still desired, it is natural to investigate the performance gains attainable via

multipath routing over a subset of the available paths.

Let ⌈ ⌉ denote the next largest integer (ceiling) function. The routing scheme

Multipath Routing via Dynamic NIx-Vectors (using ⌈𝑋𝑋/𝑘𝑘⌉ paths) (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) works as

follows: Let 𝑋𝑋 be the number of shortest paths between a source-destination node pair (𝑖𝑖, 𝑗𝑗).

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 uses the Front-Back Algorithm (Chapter 4) to allocate the same fraction of

traffic 𝑓𝑓𝑖𝑖,𝑗𝑗1 = ⋯ = 𝑓𝑓𝑖𝑖,𝑗𝑗
⌈𝑋𝑋/𝑘𝑘⌉ = 1

⌈𝑋𝑋/𝑘𝑘⌉
 to each of a randomly selected subset 𝑃𝑃𝑖𝑖,𝑗𝑗1 ,𝑃𝑃𝑖𝑖,𝑗𝑗2 , … ,𝑃𝑃𝑖𝑖,𝑗𝑗

⌈𝑋𝑋/𝑘𝑘⌉,

of these 𝑋𝑋 paths. When, for instance, 𝑘𝑘 = 2 and 𝑋𝑋 = 4, the algorithm uses ⌈4/2⌉ = 2 paths.

We assume 𝑘𝑘 ≤ �𝑚𝑚
2
�
𝑛𝑛−1

, which is the maximum number of shortest paths between any two

nodes in 𝐹𝐹𝑇𝑇(𝑚𝑚,𝑛𝑛).

Our proposed routing scheme from Chapter 2, Dual IPv4/IPv6 Routing with Front-

Back, utilizes both IPv4 and IPv6 to set up two different paths. It can be considered as a

special case of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 on 𝐹𝐹𝐹𝐹(4, 3), with fixed routing.

Theorem 3.6. Given Multipath Routing via Dynamic NIx-Vectors (using ⌈𝑋𝑋/𝑘𝑘⌉ paths)

(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) on 𝐹𝐹𝐹𝐹(𝑚𝑚, 𝑛𝑛), with 𝑚𝑚 a power of 2 and 𝑛𝑛 ≥ 1, for all 𝑇𝑇𝑇𝑇, the maximum load

on 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 links, 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, satisfies

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝑡𝑡(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × min �𝑘𝑘, �
𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

� ; (3. 24)

and the maximum load on 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switches, 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, satisfies

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊𝑡𝑡(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × min �𝑘𝑘, �
𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

� × 𝑚𝑚. (3. 25)

www.manaraa.com

46

Proof: Consider first (3.24). Our proof approach is adapted from [84]. Since, by Lemma

3.1, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝑡𝑡(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) , it suffices to establish the upper

inequality in (3.24). By fat-tree Property 3, for all source nodes 𝑖𝑖 and 𝑗𝑗 in 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛),

shortest path traffic from 𝑖𝑖 to 𝑗𝑗 passes through at most �𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 link up-channels,

0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1. By fat-tree Property 5, each of these channels carries shortest path traffic

from at most �𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

 source nodes 𝑖𝑖0, 𝑖𝑖1, . . . , 𝑖𝑖
�𝑚𝑚2 �

𝑛𝑛−1−𝑡𝑡
−1

. Under 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 routing,

traffic from each of these �𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

 nodes is uniformly distributed across ��𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

/𝑞𝑞�

randomly selected links where 𝑞𝑞 = min �𝑘𝑘, �𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

�. In the worst case, all nodes’ traffic

is distributed over the same ��𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

/𝑞𝑞� links. Hence, recalling that the total traffic

departing from source node 𝑖𝑖 under traffic matrix 𝑇𝑇𝑇𝑇 can be expressed as ∑ 𝑡𝑡𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖≠𝑗𝑗 , and

that, by Definition 3.2, no link’s up-channel load can exceed 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇), we have, for

all 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 links’ up channels 𝑙𝑙,

𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝑡𝑡(𝑙𝑙,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) ≤ �
∑ 𝑡𝑡𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖≠𝑗𝑗

��𝑚𝑚2 �
𝑛𝑛−1−𝑡𝑡

/𝑞𝑞�

�𝑚𝑚2 �
𝑛𝑛−1−𝑡𝑡

−1

𝑝𝑝=0

≤ �
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)

�𝑚𝑚2 �
𝑛𝑛−1−𝑡𝑡

/𝑞𝑞

�𝑚𝑚2 �
𝑛𝑛−1−𝑡𝑡

−1

𝑝𝑝=0

= 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × 𝑞𝑞

= 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × min �𝑘𝑘, �
𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

�.

 (3.26)

www.manaraa.com

47

Since, by 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) ’s symmetry, the same arguments hold for all 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 link down

channels, (3.24) follows from the definition 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝑡𝑡(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇).

Consider next (3.25). Since, by Lemma 3.1, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊𝑡𝑡(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇),

it again suffices to establish the upper bound. Fix 𝑇𝑇𝑇𝑇, let 𝑠𝑠 denote a switch that achieves

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊𝑡𝑡(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) under 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 , and let 𝑙𝑙0, 𝑙𝑙1, . . . , 𝑙𝑙𝑚𝑚−1 denote the links

attached to its 𝑚𝑚 ports. As all traffic that enters 𝑠𝑠 leaves 𝑠𝑠, the load on switch 𝑠𝑠 equals half

the sum of the load on its ports’ link’s up and down channels. Hence, by

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊𝑡𝑡(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇)’s definition, and (3.24),

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊𝑡𝑡(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑤𝑤𝑡𝑡(𝑠𝑠,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇)

=
1
2
� �𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝑡𝑡�𝑙𝑙𝑝𝑝,𝑢𝑢𝑢𝑢,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇� + 𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝑡𝑡�𝑙𝑙𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇��
𝑚𝑚−1

𝑝𝑝=0

≤
1
2
� (2 × 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × min �𝑘𝑘, �

𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

�)
𝑚𝑚−1

𝑝𝑝=0

= 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × min �𝑘𝑘, �
𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

�× 𝑚𝑚.□

 (3.27)

Like the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) bounds given in Theorem 3.4, the

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) bounds in Theorem 3.6 are tight.

Paralleling Theorem 3.4’s 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) bound’s tightness

arguments suffices to show that Theorem 3.6’s 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) bounds are

also tight. By paralleling Theorem 3.5’s optimality arguments one can also show that

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀’s switch load is min-max optimal among all ⌈𝑋𝑋/𝑘𝑘⌉-path policies. That is, in the

absence of knowledge of 𝑇𝑇𝑇𝑇, unequally weighting the traffic assigned to the available

paths is suboptimal.

www.manaraa.com

48

3.3.3.5 Summary

In this section, we derived worst case switch load bounds for four fat-tree routing

schemes. These bounds are summarized in Table 3.1.

Table 3.1: Lower and upper bounds for the maximum switch
load under different routing schemes.

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(∙ ,𝑇𝑇𝑇𝑇) Lower Bound Upper Bound

𝑁𝑁𝑁𝑁 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × 2 × �
𝑚𝑚
2
�
𝑛𝑛

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)
 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × ��𝑚𝑚

2
� × 𝑚𝑚, if 𝑛𝑛 = 2

 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × 𝑚𝑚
2

 × 𝑚𝑚, if 𝑛𝑛 = 3

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × 𝑘𝑘 × 𝑚𝑚

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) × 𝑚𝑚

Table 3.2: Comparison of baseload normalized maximum switch
loads under different routing schemes.

 Fat-tree size
 [max # of shortest

 paths 𝑋𝑋]
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(∙,𝑇𝑇𝑇𝑇)
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) ≤

𝐹𝐹𝑇𝑇(2, 2)
[1]

𝐹𝐹𝑇𝑇(4, 2)
[2]

𝐹𝐹𝐹𝐹(4, 3)
[4]

𝐹𝐹𝐹𝐹(8, 3)
[16]

𝑁𝑁𝑁𝑁 2 8 16 128

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 2 8 8 32

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (�1
2
𝑋𝑋� paths) - 8 8 16

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (�3
4
𝑋𝑋� paths) - - 5.33 10.67

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (all paths) 2 4 4 8

www.manaraa.com

49

Clearly, compared to Normal Routing (𝑁𝑁𝑁𝑁), the proposed schemes – Dynamic NIx-

Vector Routing (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷), Multipath Dynamic NIx-Vector Routing (using all paths)

(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀), and Multipath Dynamic NIx-Vector Routing (using ⌈𝑋𝑋/𝑘𝑘⌉ paths) (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀),

can reduce the worst case switch load observed in fat-trees.

To illustrate we compute these bounds, for the four policies, for the fat-trees

pictured in Figures 3.2-3.4 and 𝐹𝐹𝐹𝐹(8, 3) (not pictured). The results are summarized in

Table 3.2.

Figure 3.2: A simple fat-tree FT(2, 2) with 2 nodes and 3 switches.

Figure 3.3: An example fat-tree FT(4, 2) with 8 nodes and 6 switches.

www.manaraa.com

50

Figure 3.4: An example fat-tree FT(4, 3) with 16 nodes and 20 switches.

3.4 Conclusions

In this chapter, we established a relationship between the proposed multipath

routing schemes and the avoidance of TCP Incast’s onset. First, we noted, using Kulkarni’s

model of synchronized, many-to-one TCP flows, that the onset of Incast is highly

correlated to flow packet loss, and consequently, that strategies that reduce packet loss,

such as increasing switch buffer size, delay the onset of Incast. Next, we observed, from

well-known results on switch buffer sizing, that the loss rate of TCP flows can be reduced

by reducing switch loads. Finally, we defined key fat-tree routing terminology, and showed

by formal analysis that, given 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), for all traffic matrix 𝑇𝑇𝑇𝑇, the worst-case loads –

the loads most responsible for TCP Incast – are reduced by our proposed routing schemes.

www.manaraa.com

51

CHAPTER 4

THE FRONT-BACK ALGORITHM AND

ITS PERFORMANCE EVALUATION

In this chapter, we investigate a novel “front-back” approach to minimizing the

packet reordering introduced by multipath routing. We follow this with a brief discussion

of integration issues, and a performance comparison with existing algorithms. We conclude

with a discussion of the algorithm’s extension to N-paths.

4.1 Reordering Avoidance: The Front-Back Algorithm

A key problem, faced by all approaches to routing packets over multiple paths, is

packet reordering. Although in data centers shortest path latencies are typically small and

uniform due to the data center’s regular structure, flow packets taking different paths may

still arrive out of order due to differences in the queueing delays encountered in switches

along their paths. Returning packets to their original order consumes time, buffer, and

computing resources. It may also drastically reduce throughput if it persists as TCP, which

cannot distinguish between lost and reordered packets, reduces its congestion window, and

begins unnecessarily retransmitting packets that it perceives have been lost [85, 86].

Our approach to mitigating reordering’s effects is two pronged:

1. It opens separate TCP connections on each path to decouple the paths’ transport

layers, and

2. It distributes data across the paths in a manner that ensures that the work that must

be done to return the received packets to their original order is minimized.

www.manaraa.com

52

The approach assumes that the receiving node maintains a buffer of the same size

as the block data to be transmitted, and that the data is barrier-synchronized, an assumption

consistent with typical data center traffic. As the case in which only two paths are available

is significant in its own right, for simplicity we will explain our Front-Back Algorithm’s

operation in this case first. The N-paths (N > 2) extension is provided in Section 4.4.

The 2-path Front-Back Algorithm (𝐹𝐹𝐹𝐹2) works as follows:

Step 1: Open separate TCP connections for Path 1 and Path 2.

Step 2: Simultaneously begin data transfer from the front of the data block on Path 1 and

the back of the data block on Path 2.

Step 3: Complete transfer when the transfer streams “meet” in the middle of the block.

 Data block

 Next segment pointers at the beginning of transfer

 Next segment pointers at the end of transfer

Figure 4.1: An illustration of the 2-path Front-Back Algorithm’s operation.

The algorithm’s operation is illustrated in Figure 4.1. Let the first bar represent the

block data to be transferred. As the second bar depicts, when transfer begins, data transfer

on Path 1 and data transfer on Path 2 begin simultaneously from the front and back of the

data block, proceeding forward and backward, respectively. As depicted on the third bar,

transfer completes when the two transfers “meet” somewhere in the middle of the block.

www.manaraa.com

53

As Figure 4.1 highlights, at termination, the 2-path Front-Back Algorithm has

partitioned the data block into two sub data blocks, one containing those segments that

were transferred via Path 1, and another containing those segments that were transferred

via Path 2. If the path conditions – for instance, the bottleneck capacities and end-to-end

delays of the paths – were to change, so could the partition. The same can be said for all

N-path partitioning algorithms 𝑝𝑝 for mapping data block segments to the N paths.

How should we judge the performance of these algorithms? We argue that as the

receiving application is assumed to have a buffer in which to reorder the block data arriving

from the N-paths the appropriate measures are finish time – the time at which the

reassembly buffer fills, and disorder – measured by the amount of effort the application

must exert to fill the buffer.

Naturally, finish times are highly dependent on channel conditions. Nonetheless, a

poor path partition, say choosing to send all block data via only the slowest available path,

will affect it. Disorder seems easier to measure. The receiving application cares little how

the reassembly buffer fills so long as it fills in the expected order. We measure disorder –

effectively, deviations from the expected order – by counting the number of times the

reassembly buffer’s N-path pointers must “jump” from one position in the buffer to another

to complete reassembly of the data received from the N paths given path conditions 𝑝𝑝𝑝𝑝. We

term these jumps, context switches, and denote them by 𝑞𝑞(𝑝𝑝,𝑝𝑝𝑝𝑝).

 In the best case, no context switches are required, as data arrives in the expected

order, and the pointers simply increment from their initial values until the buffer fills. In

the worst case, the context switches after every segment arrives. This trivially occurs in the

2-path case, for instance, when under ideal path conditions, the partitioning algorithm sends

www.manaraa.com

54

all even indexed data segments on one channel, and all odd indexed data segments on the

other. Then, upon receipt of each segment, each pointer must jump to the next even or odd

buffer location before writing the received segment.

Let 𝑃𝑃(𝑝𝑝,𝑝𝑝𝑝𝑝) denote the partition of a data block produced by an N-path partitioning

algorithm 𝑝𝑝 under path conditions 𝑝𝑝𝑝𝑝. Then we have the following, simple but useful lemma.

Lemma 4.1. Independent of the path conditions 𝑝𝑝𝑝𝑝 , the number of context switches

𝑞𝑞(𝑝𝑝, 𝑝𝑝𝑝𝑝) required to fill the reassembly buffer given a data block partition 𝑃𝑃(𝑝𝑝,𝑝𝑝𝑐𝑐)

produced by a N-path algorithm 𝑝𝑝 is 𝑞𝑞(𝑝𝑝, 𝑝𝑝𝑝𝑝) = |𝑃𝑃(𝑝𝑝,𝑝𝑝𝑝𝑝)| –𝑁𝑁.

Proof: Writing data in |𝑃𝑃(𝑝𝑝,𝑝𝑝𝑝𝑝)| distinct buffer locations using N distinct pointers requires

|𝑃𝑃(𝑝𝑝,𝑝𝑝𝑝𝑝)| –𝑁𝑁 pointer jumps. □

Lemma 4.2. Independent of the path conditions 𝑝𝑝𝑝𝑝, 𝑞𝑞(𝐹𝐹𝐹𝐹2,𝑝𝑝𝑝𝑝) = 0.

Proof: By construction, |𝑃𝑃(𝐹𝐹𝐹𝐹2,𝑝𝑝𝑝𝑝)| = 2, hence by Lemma 4.1, 𝑞𝑞(𝐹𝐹𝐹𝐹2,𝑝𝑝𝑝𝑝) = 0. □

Theorem 4.1. With respect to both minimizing finish time, and minimizing packet disorder

(as measured by context switches), 𝐹𝐹𝐹𝐹2 is an optimal 2-path partitioning algorithm.

Proof: Consider first, the finishing time. By construction, if at any instant, one or more

paths are able to deliver a segment to the application’s reassembly buffer, under 𝐹𝐹𝐹𝐹2 they

deliver a new segment because, under 𝐹𝐹𝐹𝐹2, the forward and backward paths’ segment

sequences don’t overlap until all segments have been sent. Hence, 𝐹𝐹𝐹𝐹2’s finishing time is

at least as early as that of any other algorithm. Consider next, the disorder. As

𝑞𝑞(𝐹𝐹𝐹𝐹2,𝑝𝑝𝑝𝑝) = 0 by Lemma 4.2, 𝑞𝑞(𝐹𝐹𝐹𝐹2,𝑝𝑝𝑝𝑝) ≤ 𝑞𝑞(𝑝𝑝,𝑝𝑝𝑝𝑝) for all 𝑝𝑝. The result follows. □

4.2 Integration with Multipath Routing

Integration of our Front-Back Algorithm with Multipath Dynamic NIx-Vector

Routing and Dual IPv4/IPv6 Routing is not difficult. For Multipath Dynamic NIx-Vector

www.manaraa.com

55

Routing (using ⌈𝑋𝑋/𝑘𝑘⌉ paths), the ⌈𝑋𝑋/𝑘𝑘⌉ paths are randomly selected from the multiple

shortest paths discovered by BFS for each source-destination pair. For Dual IPv4/IPv6

Routing, we apply the Front-Back Algorithm by letting the “sending from front of file” part

use IPv4 and “sending back from end of file” part use IPv6. As illustrated in Figure 4.2,

the front-back functionality could be implemented as session layer between the application

and transport layers. This session layer would handle block partitioning and reassembly,

and keep count of the total number of segments transferred and successfully received on

all paths to ensure timely termination of all TCP connections.

Figure 4.2: Front-Back Algorithm architecture.

www.manaraa.com

56

4.3 Comparison with Existing Algorithms

In this section, we contrast the performance of our Front-Back Algorithm to that of

other approaches to combating multipath reordering. Existing schemes fall roughly into

three categories: (1) those that attempt to avoid the problem by ensuring that most packets

from the same flow follow the same path, (2) those that attempt to manage it by

coordinating path assignment with path characteristics, and (3) those that attempt to

overcome it by opening a separate TCP flow for each path and then more carefully

assigning segments to paths.

Examples of schemes in the first category include: ECMP [31], which forces all

packets from the same TCP flow to follow the same path and FLARE [87], which attempts

to direct all bursts of packets (flowlets) from the same TCP flow to the same path. While

constraining flows to specific paths indeed reduces multipath reordering, these approaches

all have the downside of limiting switches’ abilities to balance load to the granularity of flows.

Examples of schemes in the second category include: PATTHEL [88], which

manages the multipath in the session layer, and Multi-Path TCP [89], which attempts to

aggregate the available paths into a single TCP channel. Although these schemes typically

do a good job of load balancing, because they balance loads packet-by-packet, they can

induce a high degree of packet reordering.

Schemes in the third category, tend to view multipath reordering as a file

partitioning problem. History-based TCP [90], partitions data blocks to be transferred into

sub-blocks proportional to each path’s rate and then transfers the blocks on these paths.

When rates fluctuate, it performs poorly because the paths’ transfers no longer finish

concurrently, forcing the faster paths to idle, or “context switch” to another path’s block.

Arrival-time matching load balancing [91] attempts to fix the problem by maintaining

www.manaraa.com

57

running estimates of each path’s delay, and adopting a “least delay path” selection rule.

This scheme fares poorly in instances where path delays change rapidly. Finally, Dynamic

TCP [90] attempts to avoid the adaptation problem completely by adopting a “last idle path”

selection rule and keeping the transferred sub-data blocks’ size small. This limits the

amount of disorder, but generates large overheads due to the large number of block requests

needed to keep the paths busy.

Our Front-Back Algorithm belongs to this third category, but its approach to the

reordering problem is different than those of the other category 3 approaches. Whereas the

other policies attempt to limit reordering by partitioning the data block to be sent to match

the path characteristics, e.g., partitioning data into blocks proportional to the paths’ rates

[90], or partitioning data to equalize the path delays it experiences [91], our algorithm aims

to partition data to minimize the receiver’s reassembly effort as measured by context

switches. The following example highlights the potential dangers of partitioning to match

path characteristics as opposed to partitioning to minimize reassembly effort.

Example 1: 200000 segments of data are to be transferred over two paths. Based on the

available estimates, the sending node believes that the path throughputs are identical with

rate = 10 segment/s.

 Two partition algorithms are considered for assigning segments to paths, Divide2

and 2-path Front-Back. In each round Divide2 assigns segments to the paths in proportion

to the paths’ estimated throughputs. When a path completes its assigned segments, Divide2

splits the unfinished portion of the other path’s assigned segments between the two paths.

As such it can be viewed as an adaptive 2-path version of the history-based TCP parallel

access algorithm in [90]. In each round, Front-Back simply assigns segments front-to-back,

to one path, and back to front, to the other.

www.manaraa.com

58

Figure 4.3: Packet Disorder and Transfer Finish Time as functions of
throughput estimation error for Front-Back and Divide2.

www.manaraa.com

59

Figure 4.4: Packet Disorder as a function of
data size for Front-Back and Divide2.

Algorithm performance is evaluated by two metrics: Packet Disorder, and Transfer

Finish Time. As outlined in Section 4.1, Packet Disorder is measured by counting the

number of context switches (reassembly buffer pointer “jumps”) required to reassemble

the received segments, the more work required, the more disordered the segments. Transfer

Finish Time is the time at which all 200000 segments have been ordered and delivered to

the application.

Plots of the two algorithms’ Packet Disorder and Transfer Finish Times, versus the

percentage error of the algorithms’ estimates of Path 2’s throughput relative to Path 1’s

throughput, are shown in Figure 4.3. The plots not only demonstrate – consistent with

Theorem 4.1 – the superiority of the Front-Back Algorithm with respect to these two

www.manaraa.com

60

measures, but highlight the danger of relying on channel estimates to ensure in-order

delivery of flow segments traversing multiple paths. Clearly, Divide2’s Packet Disorder

and Transfer Finish Time are quite sensitive to quality of its channel estimates. As

illustrated in Figure 4.4, which plots Packet Disorder as a function of the data transferred,

given that the algorithms’ estimates of Path 2’s throughput relative to Path 1’s throughput

have a 50% error, this sensitivity only grows as the amount of data to be transferred grows.

4.4 Further Development – Generalization to N-paths

4.4.1 How the Generalization Works

In this section we investigate the extension of the Front-Back Algorithm to N paths

(N > 2). The N-path Front-Back Algorithm (𝐹𝐹𝐹𝐹𝐹𝐹) works as follows:

1. Form pairs (groups) of paths such that the largest difference among the groups’ net

throughputs is smallest. When N is odd, one group will contain a single path.

2. Partition the data block to be transferred proportional to the groups’ net throughputs.

3. For the partitions obtained, run the Front-Back Algorithm on each in parallel. When

N is odd, the partition with one assigned path transfers data normally.

4. When a group finishes transferring its partition’s data, merge it with the group with

the largest unfinished partition, repartition the merged group’s unsent data among

the merged group’s paths using the process outlined in steps 1 and 2, and run the

Front-Back Algorithm on the new groups’ partitions.

5. Repeat this process until data transfer is complete.

The algorithm’s operation in the case of four paths is illustrated in Figure 4.5.

Assume that we have four paths with throughputs 3, 4, 6 and 7, respectively. Let the first

www.manaraa.com

61

bar represent the block data to be transferred. As the second bar depicts, we form path pairs

[1, 4] and [2, 3], and partition the file by making the first 1/2 Partition A, and the rest Partition

B. As the third bar depicts, we run the Front-Back Algorithm in partitions A and B in parallel.

Assume that Path 1 experiences congestion so that Partition B finishes first. At this point,

we repartition the remainder of Partition A among all paths and continue. To do the splitting,

we form pairs [1, 3], [2, 4] (instead of [1, 2], [3, 4]) so that the largest difference between

pairs’ throughputs is smallest. Data transfer then continues as shown in the fourth bar. This

process repeats as necessary, until data transfer is complete.

 Data block

 Initial partitioning

 Next segment pointers at the beginning of transfer

 Paths [2, 3] split the remainder of partition A

Figure 4.5: An illustration of the N-path Front-Back Algorithm’s operation.

We conjecture that Theorem 4.1, which we proved for the 2-path Front-Back

Algorithm, also holds for N-paths.

Conjecture 4.1. With respect to both minimizing finish time, and minimizing packet

disorder (as measured by context switches), 𝐹𝐹𝐹𝐹𝐹𝐹 is an optimal N-path partitioning

algorithm. □

www.manaraa.com

62

The intuition underlying this conjecture goes as follows: The N-path Front-Back

Algorithm starts by forming pairs (groups) of paths such that largest difference among the

net throughputs of all path groups is smallest. When N is odd one group contains only one

path. Then it partitions the data in proportion to these pair group throughputs. These two

steps minimize the probability that any partition will be emptied early, thereby minimizing

the expected number of context switches. Data is then transferred simultaneously within

all partitions, using the 2-path Front-Back Algorithm which, by Theorem 4.1 minimizes

both the packet disorder (as measured by context switches) and finish time.

4.4.2 Comparison with Existing Algorithms

In this section we compare the Packet Disorder (as measured by context switches)

of the 4-path Front-Back Algorithm and Divide4. Divide4 is a 4-path version of the Divide2

algorithm described in Section 4.3.

Example 2: 200000 segments of data are to be transferred over four paths. Based on the

available estimates, the sending node believes that all paths throughputs are identical with

rate = 10 segment/s.

 Two partition algorithms are considered for assigning segments to paths, Divide4

and 4-path Front-Back. In each round Divide4 assigns segments to the paths in proportion

to the paths’ estimated throughputs. When a path completes its assigned segments, Divide4

splits the largest unfinished portion of the other paths’ assigned segments with the

unfinished portion’s path. As such it can be viewed as an adaptive 4-path version of the

history-based TCP parallel access algorithm in [90].

www.manaraa.com

63

(a)

(b)

Figure 4.6: Packet Disorder as a function of (a) throughput
estimation error and (b) data size for Front-Back and Divide4.

www.manaraa.com

64

Algorithm performance is evaluated by the metric of Packet Disorder. Once again,

Packet Disorder is measured by counting the number of context switches (reassembly

buffer pointer “jumps”) required to reassemble the received segments, the more work

required, the more disordered the segments.

Figure 4.6 (a) plots the two algorithms’ Packet Disorder versus the percentage error

of the algorithms’ estimates of Path 1’s throughput relative to the other paths’ throughputs.

Figure 4.6 (b) plots the two algorithms’ Packet Disorder as a function of the data

transferred, given that the algorithms’ estimates of Path 1’s throughput relative to the other

paths’ throughputs have a 50% error. These plots, once again, highlight the superiority of

the Front-Back Algorithm and the danger of relying on channel estimates to ensure in-order

delivery of flow segments traversing multiple paths.

4.5 Conclusions

In this chapter, we investigated a novel “front-back” approach to minimizing the

packet reordering introduced by multipath routing. We established the optimality of an

algorithm implementing our front-back approach for 2 paths with respect to the

minimization of packet disorder (as measured by context switches) and finish time, and

then briefly discussed how this Front-Back Algorithm could be integrated into existing

protocols. The Front-Back Algorithm’s performance was then contrasted to other proposed

algorithms for combating multipath reordering, and examples highlighting its advantages

with respect to minimizing packet disorder and transfer finish time, were presented. We

concluded the chapter with a discussion of the Front-Back Algorithm’s N-path extension

(N > 2) and examples illustrating the extension’s potential advantages.

www.manaraa.com

65

CHAPTER 5

PERFORMANCE ANALYSIS

We begin this chapter with an analysis of the proposed routing schemes. We focus

on their worst-case loading of certain network resources – expressed as oblivious

performance ratios (OPRs). We then explore typical Incast traffic patterns in data center

networks, and describe a novel method of traffic matrix decomposition to help visually

illustrate and classify traffic patterns. Potential benefits of our schemes are assessed

through ns-3 simulations on fat-trees under a variety of traffic conditions. Results indicate

that over a variety of experimental conditions, the proposed schemes reduce the incidence

of TCP Incast compared to standard routing schemes.

5.1 The Oblivious Performance Ratio (OPR)

5.1.1 Definitions of the OPR

In Chapter 3, we defined key fat-tree routing terminology for 𝐹𝐹𝐹𝐹(𝑚𝑚, 𝑛𝑛). In this

section, we extend [84]’s approach to assessing worst case link loads – formally defined as

oblivious performance ratios (OPR) – to that of worst case switch loads.

We begin by reviewing definitions of performance ratios from [84]. Given traffic

matrix 𝑇𝑇𝑇𝑇 and routing 𝑟𝑟, the performance ratio (link) measures how far 𝑟𝑟 is from being

optimal on 𝑇𝑇𝑇𝑇, with respect to link load. It is defined as the maximum link load of 𝑟𝑟

divided by the min-max optimal link load on 𝑇𝑇𝑇𝑇 [92]:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑟𝑟,𝑇𝑇𝑇𝑇) =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇)
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) . (5. 1)

www.manaraa.com

66

Intuitively, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑟𝑟,𝑇𝑇𝑇𝑇) ≥ 1. It equals 1 if and only if the routing 𝑟𝑟 achieves the min-

max optimal link load on 𝑇𝑇𝑇𝑇.

Definition 5.1 [84]. Given routing 𝑟𝑟 , the maximum performance ratio (link) over all

possible traffic matrices is defined as the oblivious performance ratio (link) [92]:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑟𝑟) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇

{𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑟𝑟,𝑇𝑇𝑇𝑇)}. (5. 2)

Similarly, given traffic matrix 𝑇𝑇𝑇𝑇 and routing 𝑟𝑟, the performance ratio (switch)

measures how far 𝑟𝑟 is from being optimal on 𝑇𝑇𝑇𝑇, with respect to switch load. It is defined

as the maximum switch load of 𝑟𝑟 divided by the min-max optimal switch load on 𝑇𝑇𝑇𝑇:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑟𝑟,𝑇𝑇𝑇𝑇) =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇)
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) . (5. 3)

Intuitively, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑟𝑟,𝑇𝑇𝑇𝑇) ≥ 1. It equals 1 if and only if the routing 𝑟𝑟 achieves the min-

max optimal switch load on 𝑇𝑇𝑇𝑇.

Definition 5.2. Given routing 𝑟𝑟, the maximum performance ratio (switch) over all possible

traffic matrices is defined as the oblivious performance ratio (switch):

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑟𝑟) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇

{𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑟𝑟,𝑇𝑇𝑇𝑇)}. (5. 4)

A routing 𝑟𝑟 that achieves the min-max optimal switch load over all 𝑇𝑇𝑇𝑇 , i.e.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑟𝑟) = 1, is an optimal routing scheme for the network.

Next, we extend the definition of oblivious performance ratio (switch) to different

levels of switches in the fat-tree network.

Definition 5.3. Given routing 𝑟𝑟 on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), with 𝑚𝑚 a power of 2 and 𝑛𝑛 ≥ 1, for all 𝑇𝑇𝑇𝑇,

the oblivious performance ratio of 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switches, 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, is defined as

www.manaraa.com

67

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡(𝑟𝑟) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇

�
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡(𝑟𝑟,𝑇𝑇𝑇𝑇)
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡(𝑇𝑇𝑇𝑇) � . (5. 5)

By construction, traffic load on the “edge” switches (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛 − 1) of 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) is not

affected by the routing scheme, Therefore, this ratio is always 1:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛−1(𝑟𝑟) = 1 for all 𝑟𝑟. (5. 6)

5.1.2 Analysis on the OPR

 We now analyze the oblivious performance ratios of different routing schemes.

Consider first Multipath Routing via Dynamic NIx-Vectors (using all paths) (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀). In

Corollary 3.2 and Theorem 3.5, we showed that given 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), for all traffic matrices

𝑇𝑇𝑇𝑇 , 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇) and 𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇𝑇𝑇) =

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑇𝑇𝑇𝑇). It follows from the definition of oblivious performance ratio that:

Theorem 5.1. Given Multipath Routing via Dynamic NIx-Vectors (using all paths)

(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), with 𝑚𝑚 a power of 2 and 𝑛𝑛 ≥ 1, for all 𝑇𝑇𝑇𝑇,

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) = 1.□ (5. 7)

Similarly, in other theorems and corollaries from Chapter 3, we derived bounds for

Normal Routing, Dynamic NIx-Vector Routing and Multipath Routing via Dynamic NIx-

Vectors (using ⌈𝑋𝑋/𝑘𝑘⌉ paths), respectively. In addition, we showed that those bounds are

tight. Thus, from the definitions of oblivious performance ratios, we have:

Theorem 5.2. Given Normal Routing (𝑁𝑁𝑁𝑁) on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), with 𝑚𝑚 a power of 2 and 𝑛𝑛 ≥ 1,

for all 𝑇𝑇𝑇𝑇, the oblivious performance ratio of 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switches, 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, satisfies

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑊𝑊𝑡𝑡(𝑁𝑁𝑁𝑁) = �
𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

.□ (5. 8)

www.manaraa.com

68

Theorem 5.3. Given Dynamic NIx-Vector Routing (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) on 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), with 𝑚𝑚 a power

of 2 and 𝑛𝑛 ≥ 1, for all 𝑇𝑇𝑇𝑇, the oblivious performance ratio (link) satisfies

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) =

⎩
⎨

⎧��
𝑚𝑚
2
� , if 𝑛𝑛 = 2

𝑚𝑚
2

, if 𝑛𝑛 = 3
; (5. 9)

and the oblivious performance ratio of 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switches, 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, satisfies

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑊𝑊𝑡𝑡(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) =

⎩
⎪
⎨

⎪
⎧min ���

𝑚𝑚
2
� , �

𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

� , if 𝑛𝑛 = 2

min �
𝑚𝑚
2

 , �
𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

� , if 𝑛𝑛 = 3
.□ (5. 10)

Figure 5.1: Comparison of the oblivious performance ratios (switch) on FT(m, 3),
for routing schemes MDNVR, MDNVRk (k=2 and 4), DNVR and NR.

www.manaraa.com

69

Theorem 5.4. Given Multipath Routing via Dynamic NIx-Vectors (using ⌈𝑋𝑋/𝑘𝑘⌉ paths)

(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) on 𝐹𝐹𝐹𝐹(𝑚𝑚, 𝑛𝑛) , with 𝑚𝑚 a power of 2 and 𝑛𝑛 ≥ 1 , for all 𝑇𝑇𝑇𝑇 , the oblivious

performance ratio of 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 links, 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, satisfies

𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝑡𝑡(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) = min �𝑘𝑘, �
𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

� ; (5. 11)

and the oblivious performance ratio of 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 switches, 0 ≤ 𝑡𝑡 ≤ 𝑛𝑛 − 1, satisfies

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑊𝑊𝑡𝑡(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) = min �𝑘𝑘, �
𝑚𝑚
2
�
𝑛𝑛−1−𝑡𝑡

� .□ (5. 12)

In Figure 5.1, we plot and compare the oblivious performance ratios for m-port 3-

trees 𝐹𝐹𝐹𝐹(𝑚𝑚, 3) , versus 𝑚𝑚 , for routing schemes 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 , 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝑘𝑘 = 2 𝑎𝑎𝑎𝑎𝑎𝑎 4) ,

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 and 𝑁𝑁𝑁𝑁 . From this figure, we can clearly see the advantages of our proposed

schemes. When 𝑚𝑚 = 8 , for instance, simply distributing traffic across 2 paths using

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝑘𝑘 = 4) yields a four-fold reduction in the worst-case switch load compared to

Normal Routing, thereby reducing the likelihood of Incast.

5.2 Traffic Patterns and Analysis

In this section, we explore typical traffic patterns in data center networks related to

TCP Incast, and identify key traffic patterns for comparing routing schemes’ performance.

5.2.1 Typical Incast Traffic Patterns

In a typical “barrier-synchronized request workload” Incast pattern, the client sends

simultaneous requests to multiple servers, which then send back responses immediately. A

distinguishing feature of this type of workload is that the client must wait for all servers’

responses to arrive before sending a new batch of requests. Additionally, to meet certain

www.manaraa.com

70

deadlines, there are typically very tight time constraints, within each “batch”, for receipt of

the servers’ responses. Consequently, servers’ responses, within a single batch, are often

almost simultaneous, and thus the traffic can be highly synchronized. Should this intense,

synchronized traffic overflow one or more network switch buffers, enough servers may

time out to initiate Incast.

For example: Suppose that each client sends requests to N servers simultaneously,

and that the workload is barrier-synchronized. Suppose additionally, that there are 100

batches of such requests, and that whenever a server receives a request, it responds with

𝐾𝐾 𝑀𝑀𝑀𝑀 of data. The data transferred in each batch is then 𝐾𝐾 × 𝑁𝑁 and, for all batches, the

total amount of data transferred is 100 × 𝐾𝐾 × 𝑁𝑁 𝑀𝑀𝑀𝑀.

Figure 5.2: A typical TCP Incast network setting from [93], with one client
requesting data from multiple servers through synchronized reads.

www.manaraa.com

71

Figure 5.2, from Zhang and Ansari [93], illustrates a typical network setting under

which Incast could occur. They summarize the conditions favorable to the onset of TCP

Incast as being:

1. high-bandwidth, low-latency links connected by switches with limited buffers;

2. parallel barrier-synchronized requests from clients;

3. servers returning a fragment of data block for each request.

Examples of previously studied Incast traffic patterns include, from:

(1) “ICTCP: Incast Congestion Control for TCP in Data-Center Networks” [21]:

• Traffic pattern: barrier-synchronized many-to-one

• Link characteristics: 1 Gbps with 100 µs round-trip delay

• Server request unit (SRU) size: 64 KB, 128 KB or 256 KB

• Switch buffer size: 85 KB per port

• Number of senders in parallel: 1 - 46

• Number of experimental rounds: 100

(2) “Preventing TCP Incast Throughput Collapse at the Initiation, Continuation

and Termination” [94]:

• Traffic pattern: barrier-synchronized many-to-one

• Link characteristics: 1 Gbps with 100 µs round trip delay

• Server request unit (SRU) size: 10 KB or 100 KB

• Switch buffer size: 128 KB per port

• Number of senders in parallel: 1 – 100

• Number of experimental rounds: 100

www.manaraa.com

72

(3) “Fast and Cautious: Leveraging Multi-path Diversity for Transport Loss Recovery

in Data Centers” [58]:

• Link characteristics: 1 Gbps with ~280 µs round trip delay

• SRU size: smaller than 100 KB for latency sensitive queries, and larger than

100 KB for background requests

• Switch buffer size: 128 KB per port

• Number of senders in parallel: 5

• Number of experimental rounds: 10

5.2.2 Worst Case Patterns

In the previous section, we briefly surveyed the characteristics of several traffic

patterns capable of inducing Incast. These “barrier-synchronized many-to-one” request

patterns are important in practice, but for the purpose of evaluating routing schemes’

effects on switch loading, simpler traffic patterns suffice. We identify a few of these

simpler patterns in this section.

We begin by observing that for our purposes – and in practice, given that Incast is

worst-case phenomenon triggered by extreme switch loading – traffic patterns that induce

the same maximum switch loads can be viewed as equivalent. Formally we say that traffic

patterns are equivalent patterns for a given routing r if they induce the same baseload

normalized maximum switch load 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇)
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) . Two classes of equivalent patterns are

of particular interest.

Worst-case patterns are those that, for a given routing 𝑟𝑟 , induce the largest

baseload normalized maximum switch load 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇)
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) .

www.manaraa.com

73

Best-case patterns are those that, for a given routing 𝑟𝑟 , induce the smallest

baseload normalized maximum switch load 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇)
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) .

To gain insight into the effects of particular traffic patterns, and to better visually

illustrate and classify them, we have found it helpful to decompose their corresponding

traffic matrices in a manner that highlights the switch levels loaded by each fat-tree send-

receive pair. By definition, an m-port n-tree 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) contains n switch levels. Send-

receive pairs that traverse 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 (the core switches), traverse all 𝑛𝑛 – 1 lower levels.

Send-receive pairs that traverse 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1 (the highest-level aggregation switches), but not

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0, traverse 𝑛𝑛 – 2 lower levels, and so on. As the pairs traversing 𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 0 are disjoint

from the pairs traversing 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1 but not 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0, and the pairs traversing 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 2 but not

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1, and so on, it follows that any traffic matrix for 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) can be decomposed as

𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑀𝑀0 + 𝑇𝑇𝑀𝑀1 + ⋯+ 𝑇𝑇𝑀𝑀𝑛𝑛−1 (5. 13)

where 𝑇𝑇𝑀𝑀𝑖𝑖 , 𝑖𝑖 = 0, 1, … ,𝑛𝑛 − 1, indexes those send-receive pairs in 𝑇𝑇𝑇𝑇 that traverse 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖,

but no higher level.

 The utility of this decomposition is best illustrated by example. Consider the 4-port

3-tree 𝐹𝐹𝐹𝐹(4, 3) depicted in Figure 5.3. As this tree has 3 levels, all 𝑇𝑇𝑇𝑇 on 𝐹𝐹𝐹𝐹(4, 3) can be

decomposed as 𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑀𝑀0 + 𝑇𝑇𝑀𝑀1 + 𝑇𝑇𝑀𝑀2 . To more conveniently display this

decomposition in a single figure we adopt the following convention:

• Source-destination pairs in 𝑇𝑇𝑀𝑀2 will be labeled 𝐸𝐸 (because they correspond to

communications that only traverse 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 2 (edge) switches.

• Source-destination pairs in 𝑇𝑇𝑀𝑀1 will be labeled 𝐴𝐴 (because they correspond to

communications that traverse 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1 (aggregation) but not 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 (core) switches.

www.manaraa.com

74

• Source-destination pairs in 𝑇𝑇𝑀𝑀0 will be labeled 𝐼𝐼 (because they correspond to

interpod communications that traverse a 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 (core) switch.

Superimposing the decomposed 𝑇𝑇𝑇𝑇𝑇𝑇 on top of each other we obtain, for the node labeling

in Figure 5.3, the generic traffic matrix representation depicted in Figure 5.4.

 To examine the decomposition of a specific traffic matrix one simply superimposes

the specific matrix on the generic representation. Consider, for instance, the traffic matrices

corresponding to the test patterns Stride(2), and Stride(4) in [31]. Let the nodes in 𝐹𝐹𝐹𝐹(4, 3)

be labeled from left to right as 0, 1, …, 15. Under Stride(2), every node 𝑖𝑖 sends a unit of

traffic to node ‘(𝑖𝑖 + 2) mod 16’. Under Stride(4), every node 𝑖𝑖 sends a unit of traffic to

node ‘(𝑖𝑖 + 4) mod 16’. More concretely, Stride(2) specifies that each node in the smallest

(1 level) subtree 𝑋𝑋′ send traffic to the node in the same position in the adjacent 1 level

subtree (𝑋𝑋′ + 1) mod 8. Similarly, Stride(4) specifies that each node in the 2 level subtree

𝑋𝑋 send traffic to the node in the same position in the adjacent 2 level subtree

(𝑋𝑋 + 1) mod 4. Such patterns are often referred to as “permutation traffic” because each

node sends traffic to a distinct destination. Plotting Stride(2) and Stride(4) on Figure 5.4

we obtain Figures 5.5(a) and 5.5(b). Close examination of these figures, indicates that

Stride(4) only generates “inter-pod” traffic, while Stride(2) generates a mixture of “inter-

pod” and “same aggregation switch” traffic.

 To use the decomposition to identify worst-case and best-case traffic patterns,

observe from Figures 5.3 and 5.4 that:

• “Same edge switch” traffic only loads edge switches.

• “Same aggregation switch” traffic loads both edge and aggregation level switches.

• “Inter-pod” traffic loads edge, aggregation, and core level switches.

www.manaraa.com

75

Figure 5.3: An example FT(4, 3) fat-tree network.

Figure 5.4: Traffic matrix decomposition for FT(4, 3).
Symbols: E – same edge switch, A – same aggregation switch, I – inter-pod.

www.manaraa.com

76

(a) Stride(2)

(b) Stride(4)

Figure 5.5: Traffic matrix decomposition for (a) Stride(2) and (b) Stride(4).

www.manaraa.com

77

Consider first the class of best-case patterns. As discussed in Section 5.1.1, traffic

load on the “edge” switches (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛 − 1) does not depend on the routing scheme.

Therefore, traffic patterns that contain only “same edge switch” traffic (“𝐸𝐸” symbols on

Figure 5.4), belong to this class and impose the same switch load as optimal routing.

Consider next the class of worst-case patterns. Observe first that worst-case patterns

should contain “inter-pod” traffic (“𝐼𝐼” symbols on Figure 5.4), because this type of traffic

loads switches at all three levels. Additionally, as 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇) is calculated as the

maximum of all row and column sums, to achieve the highest baseload normalized

maximum switch load, all columns and rows of worst-case patterns should have the same

sum. For example, we can place a single block of traffic in each column and row, within

the “𝐼𝐼” symbol areas.

Clearly, the traffic pattern Stride(4), which specifies that each node in the 2 level

subtree 𝑋𝑋 of 𝐹𝐹𝐹𝐹(4, 3) send a unit of traffic to the node in the same position in the adjacent

2 level subtree (𝑋𝑋 + 1) mod 4, satisfies this requirement and is thus a worst-case pattern.

The following theorem generalizes this observation to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ��𝑚𝑚
2
�
𝑛𝑛−1

�, under which every

node 𝑖𝑖 sends a unit of traffic to node �𝑖𝑖 + �𝑚𝑚
2
�
𝑛𝑛−1

� mod �2 × �𝑚𝑚
2
�
𝑛𝑛
�.

Theorem 5.5. Given 𝐹𝐹𝐹𝐹(𝑚𝑚, 𝑛𝑛) , with 𝑚𝑚 a power of 2 and 𝑛𝑛 ≥ 1 , the traffic pattern

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ��𝑚𝑚
2
�
𝑛𝑛−1

� achieves the baseload normalized maximum switch load 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟,𝑇𝑇𝑇𝑇)
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇𝑇𝑇)

upper bounds in Table 3.1, for routing schemes 𝑟𝑟 = 𝑁𝑁𝑁𝑁, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀.

Proof: Given 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛), 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ��𝑚𝑚
2
�
𝑛𝑛−1

� (“𝑆𝑆𝑆𝑆𝑆𝑆”) specifies that each source node in the

𝑛𝑛 − 1 level subtree 𝑋𝑋 send a unit of traffic to the node in the same position in the adjacent

𝑛𝑛 − 1 level subtree (𝑋𝑋 + 1) mod 𝑚𝑚. All connections are “inter-pod”. As each node sends

www.manaraa.com

78

the same amount of traffic they all send 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑆𝑆𝑆𝑆𝑆𝑆). Additionally, we observe that

the traffic sent by all nodes, which equals 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑆𝑆𝑆𝑆𝑆𝑆) × 2 × �𝑚𝑚
2
�
𝑛𝑛

, must pass

through 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 “core” switches.

Consider first Normal Routing (𝑁𝑁𝑁𝑁). In our proof of Theorem 3.1, we showed that

the leftmost 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 switch is maximally loaded by 𝑇𝑇𝑇𝑇𝑇𝑇 under which all source nodes’

traffic is directed towards 𝑛𝑛 − 1 level sub-fat-trees other than their own. Because 𝑆𝑆𝑆𝑆𝑆𝑆 is

such a 𝑇𝑇𝑇𝑇, we have 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑁𝑁𝑁𝑁, 𝑆𝑆𝑆𝑆𝑆𝑆) = 𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑆𝑆𝑆𝑆𝑆𝑆) × 2 × �𝑚𝑚
2
�
𝑛𝑛

.

Consider next Dynamic NIx-Vector Routing (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷). By our proof of Theorem 3.2,

because each node sends 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑆𝑆𝑆𝑆𝑆𝑆), each link in the network carries traffic to or

from ��𝑚𝑚
2
� source nodes for 𝑛𝑛 = 2, and traffic to or from 𝑚𝑚

2
 source nodes for 𝑛𝑛 = 3. As

each switch in 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) has 𝑚𝑚 links, the maximum switch load 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, 𝑆𝑆𝑆𝑆𝑆𝑆)

is thus 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑆𝑆𝑆𝑆𝑆𝑆) × ��𝑚𝑚
2
� × 𝑚𝑚 for 𝑛𝑛 = 2, and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑆𝑆𝑆𝑆𝑆𝑆) × 𝑚𝑚

2
× 𝑚𝑚 for 𝑛𝑛 = 3.

Consider next Multipath Routing via Dynamic NIx-Vectors (using all paths)

(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀). As shown above, all nodes’ traffic must pass through 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 “core” switches.

Because 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 achieves the min-max optimal switch load (Theorem 3.5), traffic load is

uniformly distributed among the �𝑚𝑚
2
�
𝑛𝑛−1

 core switches. Hence each switch carries traffic

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑆𝑆𝑆𝑆𝑆𝑆) = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑆𝑆𝑆𝑆𝑆𝑆) × 2 ×
�𝑚𝑚2 �

𝑛𝑛

�𝑚𝑚2 �
𝑛𝑛−1 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑆𝑆𝑆𝑆𝑆𝑆) × 𝑚𝑚.

Finally, consider Multipath Routing via Dynamic NIx-Vectors (using ⌈𝑋𝑋/𝑘𝑘⌉ paths)

(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀). First, note that there are �𝑚𝑚
2
�
𝑛𝑛−1

× 𝑚𝑚 total links connected to the 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0

“core” switches. In the worst case, all nodes’ traffic is distributed over the same �𝑚𝑚
2
�
𝑛𝑛−1

×

www.manaraa.com

79

𝑚𝑚
𝑘𝑘

 links. Hence each 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 link carries 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑆𝑆𝑆𝑆𝑆𝑆) × 2 × �𝑚𝑚
2
�
𝑛𝑛

/ ��𝑚𝑚
2
�
𝑛𝑛−1

×

𝑚𝑚
𝑘𝑘
� = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑆𝑆𝑆𝑆𝑆𝑆) × 𝑘𝑘 traffic, and each 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 switch, with 𝑚𝑚 links attached,

carries 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑆𝑆𝑆𝑆𝑆𝑆) = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑆𝑆𝑆𝑆𝑆𝑆) × 𝑘𝑘 × 𝑚𝑚 traffic. □

Theorem 5.5 says that no 𝑇𝑇𝑇𝑇 induces higher baseload normalized maximum

switch load in 𝐹𝐹𝐹𝐹(𝑚𝑚,𝑛𝑛) than 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ��𝑚𝑚
2
�
𝑛𝑛−1

�. It is thus a worst case 𝑇𝑇𝑇𝑇 for these routings.

Table 5.1: Traffic matrix Stride(4) on the 4-port fat-tree FT(4, 3).

Node # 000 001 010 011 100 101 110 111 200 201 210 211 300 301 310 311

000 1
001 1
010 1
011 1
100 1
101 1
110 1
111 1
200 1
201 1
210 1
211 1
300 1
301 1
310 1
311 1

Next, we evaluate the performance ratios of different routing schemes under the

worst-case traffic pattern Stride(4) (“𝑆𝑆4”) on the 4-port fat-tree 𝐹𝐹𝐹𝐹(4, 3). The traffic matrix

for Stride(4), with each node sending one unit of traffic, is shown in Table 5.1. We use

www.manaraa.com

80

Maple, a powerful symbolic and numeric computing platform, for the evaluations. Source

codes for the Maple programs can be found in the Appendix.

The routing schemes to be evaluated include: Multipath Routing via Dynamic NIx-

Vectors (using all paths) (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀), Multipath Routing via Dynamic NIx-Vectors (using

⌈𝑋𝑋/𝑘𝑘⌉ paths) (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) with 𝑘𝑘 = 4
3

, 2 𝑎𝑎𝑎𝑎𝑎𝑎 4, Dynamic NIx-Vector Routing (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) and

Normal Routing (𝑁𝑁𝑁𝑁). Maple results are shown in Table 5.2. They are consistent with the

results of Theorems 5.1 through 5.4.

Table 5.2: Maple evaluation results for comparing different
routing schemes’ oblivious performance ratios

Routing scheme 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊0(∙,𝑆𝑆4) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊1(∙, 𝑆𝑆4) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(∙,𝑆𝑆4)

𝑁𝑁𝑁𝑁 16 8 4

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 8 8 2

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝑘𝑘 = 4) 16 8 4

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝑘𝑘 = 2) 8 8 2

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝑘𝑘 =
4
3

)
16
3

 4
4
3

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 4 4 1

5.3 Validation by Simulations on the ns-3 Platform

In this section, we assess the potential benefits of our proposed routing schemes

through ns-3 simulations on fat-trees under a variety of communication patterns. Results

indicate that over a variety of experimental conditions, the proposed schemes reduce the

incidence of TCP Incast compared to standard routing schemes.

www.manaraa.com

81

5.3.1 Simulation Setup

We use the ns-3 network simulator [95] (version 3.14.1) to validate our approach.

ns-3 is an open, extensible discrete-event network simulation platform, developed

primarily for networking research and educational use. It contains a variety of models for

network protocols and routing. The simulator itself is written in C++, with optional Python

bindings. Both C++ and Python are supported for ns-3 simulation scripts.

5.3.1.1 Simulation Parameters

Table 5.3: Parameters used in our ns-3 simulations.

Parameter
Values for Random,
Stride(2) and Stride(4)

Values for 3 Senders,
5 Senders and 7 Senders

Link Bandwidth 1 Gbps 1 Gbps

Link Delay 500 µs 500 µs

Data to be sent from each node 2 MB (2,000,000 bytes) 262144 bytes × 10 blocks

Switch buffer size varies from 10~90 packets varies from 20~200 packets

TCP implementation TCP Reno TCP Reno

TCP max segment size 1452 bytes 1452 bytes

Max size of receiver window 65535 bytes 65535 bytes

Fast retransmit threshold 3 duplicate ACKs 3 duplicate ACKs

RTOmin 200 ms 200 ms

A ns-3 simulation was created from scratch, using the 𝐹𝐹𝐹𝐹(4, 3) fat-tree topology as

shown in Figure 1.4. The complete simulation code can be found in the Appendix.

Figure 5.6 shows a snapshot of our simulation topology, as displayed in the ns-3

PyViz [96] simulation animation interface. Table 5.3 summarizes the parameters used in

our simulations. All links in the network are 1 Gbps, with a round-trip delay of 500 µs. We

www.manaraa.com

82

use the TCP Reno implementation with a maximum segment size (MSS) of 1452 bytes,

and a minimum TCP re-transmission timeout (RTO) value of 200 ms. The TCP receiver

window has a maximum size of 65535 bytes.

Figure 5.6: Our ns-3 simulation topology.

For traffic patterns Random, Stride(2) and Stride(4), the amount of data to be sent

from each node is 2 MB (2,000,000 bytes), and switch buffer sizes vary from 10 to 90

packets. For traffic patterns 3 Senders, 5 Senders and 7 Senders, each node sends 262144

bytes × 10 blocks of data, and switch buffer sizes vary from 20 to 200 packets.

5.3.1.2 Illustrations of the Proposed Schemes

The routing schemes to be investigated include:

1. Normal Routing, which corresponds to the single-path IPv4 table-based scheme,

2. Normal Routing with ECMP, which utilizes the per-packet ECMP feature in ns-3,

3. Dynamic NIx-Vector Routing, a NIx-vector routing variant that uses our modified

BFS algorithm to select one path from the multiple available shortest paths,

www.manaraa.com

83

Figure 5.7: Path selection by different schemes in our simulation.

(a) Normal Routing, (b) Dynamic NIx-Vector Routing,
(c) Multipath Routing via Dynamic NIx-Vectors.

www.manaraa.com

84

4. Multipath Routing via Dynamic NIx-Vectors, which extends NIx-vector routing to

the multipath case using the Front-Back Algorithm (introduced in Chapter 4) to

distribute traffic across the shortest paths, and

5. Dual IPv4/IPv6 Routing with Front-Back utilizes both IPv4 and IPv6 to set up two

different paths, and then use the Front-Back Algorithm to send data.

Figure 5.7 shows a “live” snapshot of our ns-3 simulation, with traffic flows between nodes

highlighted to illustrate the path selection of the routing schemes.

Normal routing always picks the same shortest path from the four available for each

source-destination pair. This can be seen in Figure 5.7 (a). To implement Dynamic NIx-

Vector Routing, the BFS function in the existing ns-3 NIx-Vector Routing scheme was

modified, so that every time it is called it returns a randomly selected shortest path from

those discovered by BFS. An example is shown in Figure 5.7 (b). Choosing different

random seeds results in different shortest paths being selected. Next, we apply the Front-

Back Algorithm. The resulting Multipath Routing via Dynamic NIx-Vectors will further

balance traffic, as illustrated in Figure 5.7 (c).

5.3.1.3 Traffic Patterns Investigated

We investigated the following traffic patterns from [31]. Let the nodes in 𝐹𝐹𝐹𝐹(4, 3)

be labeled from left to right as 0, 1, …, 15, these patterns can be described as follows:

• Random: Every node 𝑖𝑖 sends the same traffic to any other node in the network with

uniform probability.

• Stride(2): Every node 𝑖𝑖 sends the same traffic to node ‘(𝑖𝑖 + 2) mod 16’.

• Stride(4): Every node 𝑖𝑖 sends the same traffic to node ‘(𝑖𝑖 + 4) mod 16’.

www.manaraa.com

85

Figure 5.8: Traffic matrices for Stride(2) (left) and Stride(4) (right).

Figure 5.9: Traffic matrices for 3 Senders (top left),
5 Senders (top right) and 7 Senders (bottom).

www.manaraa.com

86

The traffic matrices for Stride(2) and Stride(4) on 𝐹𝐹𝐹𝐹(4, 3) are illustrated in Figure

5.8. The amount of data to be sent from each node is 2 MB (2,000,000 bytes). We selected

Stride(4) because it is an important traffic pattern for comparing routing schemes’

performance. Specifically, in Theorem 5.5 we showed that Stride(4) is a worst-case 𝑇𝑇𝑇𝑇

for the 𝐹𝐹𝐹𝐹(4, 3) routing schemes that we study, and that no 𝑇𝑇𝑇𝑇 induces higher baseload

normalized maximum switch load in 𝐹𝐹𝐹𝐹(4, 3) than Stride(4).

Some additional traffic patterns that we investigated include:

• 3 Senders: Each node receives data from 3 other nodes in the network.

• 5 Senders: Each node receives data from 5 other nodes in the network.

• 7 Senders: Each node receives data from 7 other nodes in the network.

Figure 5.9 shows the traffic matrices for 3, 5 and 7 Senders. These traffic patterns

represent the typical many-to-one barrier-synchronized workload in data centers, as

discussed in Section 5.2.1. Specifically, each client requests 10 blocks of data, 262144

bytes × 𝑁𝑁 each, striped over 𝑁𝑁 servers (𝑁𝑁 = 3, 5, or 7, respectively). Clients request block

𝑘𝑘 + 1 only after successful receipt of all fragments in block 𝑘𝑘.

5.3.1.4 Tools for Gathering Statistics

We use FlowMonitor [97] to gather statistics for each flow. To further improve the

accuracy of the flow statistics, we enabled packet capture during simulation, and then used

a bash script we wrote to automatically process the .pcap files with tshark (part of

Wireshark), retrieve statistics and store them in ASCII text files. After that, we ran a

MATLAB script which takes these text files as input and automatically generates plots of

various statistics for the schemes. These scripts are available in the Appendix. To speed up

simulations, we used GNU parallel [98] to run multiple simulations at the same time.

www.manaraa.com

87

5.3.2 Sample Outputs from Simulation

Table 5.4 shows sample outputs from a run of the ns-3 simulation program for

Normal Routing. Note that for readability, fewer flows were created in this sample run.

The first part of the output displays various user-controlled parameters, which can

be specified from the command-line. “Routing scheme” specifies which routing scheme is

being simulated. QueueSize sets the buffer size (in packets) in all switches. SendBytes is

the total amount of data (in bytes) to be transferred from each sender. SendPattern specifies

which communication pattern (Random, Stride(2), or Stride(4)) should be used.

The second part of the output shows various flow statistics, gathered by

FlowMonitor [97]. These include, for each flow, the time when the last packet is received,

total transferred bytes, average throughput, etc. A summary across all flows is then shown.

Table 5.4: Sample output from simulations for Normal Routing.

*****Parameters Selected*****
Random seed is 81, Routing scheme is Normal Routing
QueueSize is 30, SendBytes is 5000000, SendPattern is STRIDE(4)

Simulation running, please wait ...

Flow 1: timeLastRx: 1.53 s, txBytes: 5017 KB, rxBytes: 5017 KB, lostPackets: 0, throughput: 9435 KB/s
Flow 2: timeLastRx: 1.87 s, txBytes: 5069 KB, rxBytes: 5032 KB, lostPackets: 26, throughput: 5806 KB/s
Flow 3: timeLastRx: 1.53 s, txBytes: 5017 KB, rxBytes: 5017 KB, lostPackets: 0, throughput: 9435 KB/s
Flow 4: timeLastRx: 1.61 s, txBytes: 5018 KB, rxBytes: 5017 KB, lostPackets: 1, throughput: 8275 KB/s

Average flow completion time: 0.64 s, Average flow throughput: 8238 KB/s
Total bytes transferred: 20123 KB, Total lost packets: 27

Flow 1: (10.1.1.1/49153 --> 10.2.1.1/1), Flow 2: (10.1.1.3/49153 --> 10.2.1.3/2)
Flow 3: (10.1.3.1/49153 --> 10.2.3.1/3), Flow 4: (10.1.3.3/49153 --> 10.2.3.3/4)

Simulation took: 9 seconds

www.manaraa.com

88

The third part of the output displays the connection details of each flow, in the form

of (source address/source port  destination address/destination port). Finally, the

simulation duration (in wall clock time) is shown.

Another sample output, generated by a run of the ns-3 simulation for Multipath

Routing via Dynamic NIx-Vectors, is shown in Table 5.5, with the same parameters.

Here, flow 1 and flow 2 are grouped; flow 3 and flow 4 are grouped, etc. The sum

of transferred bytes for all flows in each group is SendBytes. However, the number of

transferred bytes for each flow can vary, as they may encounter different path conditions.

Table 5.5: Sample output from simulations for
Multipath Routing via Dynamic NIx-Vectors.

*****Parameters Selected*****
Random seed is 81, Routing scheme is Multipath Routing via Dynamic NIx-Vectors
QueueSize is 30, SendBytes is 5000000, SendPattern is STRIDE(4)

Simulation running, please wait ...

Flow 1: timeLastRx: 1.29 s, txBytes: 2527 KB, rxBytes: 2527 KB, lostPackets: 0, throughput: 8568 KB/s
Flow 2: timeLastRx: 1.3 s, txBytes: 2490 KB, rxBytes: 2490 KB, lostPackets: 0, throughput: 8424 KB/s
Flow 3: timeLastRx: 1.3 s, txBytes: 2527 KB, rxBytes: 2527 KB, lostPackets: 0, throughput: 8549 KB/s
Flow 4: timeLastRx: 1.3 s, txBytes: 2490 KB, rxBytes: 2490 KB, lostPackets: 0, throughput: 8423 KB/s
Flow 5: timeLastRx: 1.29 s, txBytes: 2527 KB, rxBytes: 2527 KB, lostPackets: 0, throughput: 8570 KB/s
Flow 6: timeLastRx: 1.3 s, txBytes: 2490 KB, rxBytes: 2490 KB, lostPackets: 0, throughput: 8412 KB/s
Flow 7: timeLastRx: 1.3 s, txBytes: 2527 KB, rxBytes: 2527 KB, lostPackets: 0, throughput: 8558 KB/s
Flow 8: timeLastRx: 1.3 s, txBytes: 2490 KB, rxBytes: 2490 KB, lostPackets: 0, throughput: 8423 KB/s

Average flow completion time: 0.3 s, Average flow throughput: 16982 KB/s
Total bytes transferred: 20070 KB, Total lost packets: 0

Flow 1: (10.1.1.1/49153 --> 10.2.1.1/1), Flow 2: (10.1.1.5/49153 --> 10.2.1.5/1)
Flow 3: (10.1.1.3/49153 --> 10.2.1.3/2), Flow 4: (10.1.1.7/49153 --> 10.2.1.7/2)
Flow 5: (10.1.3.1/49153 --> 10.2.3.1/3), Flow 6: (10.1.3.5/49153 --> 10.2.3.5/3)
Flow 7: (10.1.3.3/49153 --> 10.2.3.3/4), Flow 8: (10.1.3.7/49153 --> 10.2.3.7/4)

Simulation took: 9 seconds

www.manaraa.com

89

5.3.3 Addressing the Incast Problem

From our earlier analysis of switch load in Chapter 3, we concluded that compared

to standard routing schemes, our proposed schemes do a better job of load balancing and

avoiding switch buffer overfills which are the root causes of Incast.

 (a) (b)

 (c) (d)

Figure 5.10: Illustration of the effectiveness of proposed schemes on alleviating Incast.
(a) Normal Routing, (b) Normal Routing w/ ECMP, (c) Dynamic NIx-Vector

Routing, (d) Multipath Routing via Dynamic NIx-Vectors.

www.manaraa.com

90

In our ns-3 simulations, by tracing the TCP congestion window size, we

demonstrated the effectiveness of our proposed schemes on alleviating Incast, which

agreed with our analysis. The results are plotted in Figure 5.10. We see that both Normal

Routing and Normal Routing with ECMP suffer drastic reductions of TCP congestion

window size shortly after data transfer begins. This corresponds to significant drops in

perceived application-level throughput (goodput) and is due to Incast. For our proposed

schemes, Dynamic NIx-Vector Routing and Multipath Routing via Dynamic NIx-Vectors,

we do not see any TCP congestion window size reduction at similar time intervals.

Therefore, we conclude that our schemes are indeed effective in alleviating Incast.

Additionally, we observe from Figure 5.10 that by avoiding Incast, our proposed

routing schemes complete data transfer earlier than standard schemes.

5.3.4 Performance Study

To compare routing schemes’ performance, we use the following metrics:

1. Average flow completion time [58, 99], defined as the average finish time across

all flows. The time duration begins with TCP handshake, and ends when an ACK

for the last data segment is received.

2. Average flow throughput, defined as the average throughput across all flows. The

throughput for each flow is calculated by dividing the total bytes transferred by the

time duration of the transfer.

The first metric, average flow completion time, is of particular interest for

distributed data center applications, such as web search and analytics [100]. As shown in

[101], network flows that fail to return their partial results on time can severely affect the

responsiveness of real-time applications or degrade their results.

www.manaraa.com

91

Figure 5.11: Comparison of average flow completion time and throughput for Stride(4).

Figure 5.12: Comparison of average flow completion time and throughput for Random.

www.manaraa.com

92

Figure 5.13: Comparison of average flow completion time and throughput for Stride(2).

We first compare the performance of the proposed routing schemes under traffic

patterns Random, Stride(2) and Stride(4). The simulation results (averaged over 20 runs)

are shown in Figures 5.11-5.13. The left subfigures show the average flow completion time,

i.e. the average time duration for each node’s data transfer to complete (lower is better);

the right subfigures show average flow throughput (higher is better).

In Section 5.3.3, we showed, by tracing the TCP congestion window size, that our

proposed schemes are effective at alleviating Incast. As observed in Figure 5.10, whenever

Incast occurs, there is a steep decline in TCP throughput followed by a slow recovery. This

will affect the overall average flow throughput, which can be seen from our results.

We now analyze the results in Figures 5.11-5.13. First, we compare Dynamic NIx-

Vector Routing with Normal Routing and Normal Routing with ECMP (which uses the per-

packet ECMP feature in ns-3). In the figures, these schemes’ performances are plotted,

www.manaraa.com

93

respectively, as gold, blue and red lines. From the figures, we can see that Dynamic NIx-

Vector Routing outperforms Normal Routing for all three communication patterns. In

addition, Stride(4) results in the most performance difference between the two schemes.

This is because the core switches experience heavy traffic in Stride(4), so any improvement

in traffic balancing leads to more significant results.

The reason that Normal Routing with ECMP has bad performance is due to packet

reordering induced by per-packet ECMP, which confuses TCP as packet loss and

significantly degrades its performance. The scheme improves slightly in Stride(2), because

of the lower number of hops (4 versus 6) between source-destination pairs.

Next, we compare Multipath Routing via Dynamic NIx-Vectors and Dual IPv4/IPv6

Routing with Front-Back and Normal Routing, plotted as the magenta, green and blue lines,

respectively. We observe that the first two, which are our proposed schemes, significantly

outperform the last one in the simulation. Looking at the “average flow throughput” plot,

we see that the most improvement occurs at approx. buffer size 50, with a percentage of

around 80% under Stride(4). The performance difference between Multipath Routing via

Dynamic NIx-Vectors and Dual IPv4/IPv6 Routing with Front-Back is generally small.

However, under the Random communication pattern, the latter has better performance.

In conclusion, from the figures we can see that our proposed scheme Multipath

Routing via Dynamic NIx-Vectors outperforms both Normal Routing and Normal Routing

with ECMP for all three communication patterns Random, Stride(2) and Stride(4).

From the “average flow completion time” plot, we see that the most improvement

under Stride(4) is observed at approx. buffer size 50, reducing the completion time by 50%

or more.

www.manaraa.com

94

Figure 5.14: Comparison of average flow completion time and throughput for 3 Senders.

Figure 5.15: Comparison of average flow completion time and throughput for 5 Senders.

www.manaraa.com

95

Figure 5.16: Comparison of average flow completion time and throughput for 7 Senders.

Next, we compare performance of the proposed routing schemes under the

additional traffic patterns 3 Senders, 5 Senders and 7 Senders, as illustrated earlier in this

section. The results are plotted in Figures 5.14-5.16. Again, the left subfigures show the

average flow completion time, i.e. the average time duration for each node’s data transfer

to complete (lower is better); the right subfigures show average flow throughput (higher is

better). We can see that our proposed schemes Multipath Routing via Dynamic NIx-Vectors

and Dual IPv4/IPv6 Routing with Front-Back outperform Normal Routing for all three

communication patterns.

Specifically, looking at the “average flow completion time” subfigures, we see that:

For 3 Senders, the most improvement is observed at approx. buffer size 80,

reducing the completion time by 75% or more.

www.manaraa.com

96

For 5 Senders, the most improvement is observed at approx. buffer size 140,

reducing the completion time by 80% or more.

For 7 Senders, the most improvement is observed at approx. buffer size 180,

reducing the completion time by 80% or more.

Figure 5.17: Comparison of average flow completion time and throughput for 7 Senders,
with 1ms RTO instead of the normal 200ms RTO.

Finally, we investigate our proposed schemes’ performance in conjunction with

other researchers’ method of reducing the TCP re-transmission timeout (RTO) [4]. Figure

5.17 plots the schemes’ performance under traffic pattern 7 Senders, with 1ms RTO instead

of the normal 200ms RTO. We observe that, under the reduced TCP RTO of 1ms, our

proposed scheme Multipath Routing via Dynamic NIx-Vectors still outperforms Normal

Routing by both reducing average flow completion time and improving throughput. More

www.manaraa.com

97

importantly, this means our approach can be “complementary” to the method of reducing

TCP RTO, and both methods could be applied simultaneously to further improve

performance.

5.4 Conclusions

In this chapter, we first defined and analyzed the oblivious performance ratios

(OPRs) under the proposed routing schemes. We then explored typical Incast traffic

patterns in data center networks, i.e. the “barrier-synchronized request workload”, and

summarized the conditions favorable to the onset of TCP Incast. Next, we identified

important traffic patterns using our new method of traffic matrix decomposition, and

illustrated different routing schemes’ performance ratios.

Next, we assessed the potential benefits of our proposed routing schemes through

ns-3 simulations on fat-trees under a variety of communication patterns. By tracing the

TCP congestion window size, we demonstrated the effectiveness of our schemes on

alleviating TCP Incast. In the detailed performance study that followed, we focused on two

important metrics, namely the average flow completion time and average flow throughput,

to help compare routing schemes’ performance. Results indicate that the proposed schemes

outperform standard routing schemes over a variety of experimental conditions.

www.manaraa.com

98

CHAPTER 6

CONCLUSIONS AND POSSIBLE EXTENSIONS

6.1 Summary of Research

In this dissertation, we used network regularity to overcome TCP Incast through

multipath routing. First, we developed new oblivious, multi-path, routing schemes for fat-

tree networks, which provide a low overhead means to reduce the likelihood of Incast.

Next, we established that these schemes delay the onset of Incast, by deriving tight worst-

case loading bounds for fat-tree switches and proving that our schemes lower these bounds.

We then investigated a novel “front-back” approach to avoid multipath reordering, proved

its optimality for two paths, and extended the algorithm to N paths (N > 2).

Our performance analysis began with an investigation of different routing schemes’

oblivious performance ratios (OPRs). We then explored typical Incast traffic patterns in

data center networks, and described a novel method for traffic matrix decomposition to

help visually illustrate and classify traffic patterns. Finally, we assessed the potential

benefits of our schemes through ns-3 simulations on fat-trees under a variety of traffic

conditions. Results indicate that over a variety of experimental conditions, the proposed

schemes reduced the incidence of TCP Incast compared to standard routing schemes.

6.2 Possible Extensions

Alternative NIx-like approach by enabling source routing in data centers

Source routing [102] allows the sender of a packet to specify the route the packet

takes through the network, either partially or completely. There are IPv4 header options

www.manaraa.com

99

and IPv6 routing header extensions that can be used for source routing. Unfortunately,

these options have been disabled on most Internet switches due to security concerns. For

instance, an attacker can spoof his/her IP address to impersonate another user, while still

receiving responses by specifying his/her real IP address as one of the hops that the packets

must traverse. In recent years, source routing has seen increased application in routing

protocols. In [34], the authors proposed BCube Source Routing (BSR), specific to the

BCube topology. Notable examples for wireless networks include Dynamic Source

Routing (DSR) [103] and Multipath Dynamic Source Routing (MP-DSR) [104].

Figure 6.1: Some state-of-the-art data center topologies from [105].

www.manaraa.com

100

We argue that since an entire data center network is often managed and maintained

by a single company or entity, the security issues stated above become less of a concern.

Hence, enabling the source routing options for all switches in a data center would give us

great flexibility in routing. This would be a viable alternative to the NIx-Vector routing

schemes. Given that source routing is enabled, the source node can easily control which

path each packet will traverse, by simply adding the appropriate options in packet headers.

Therefore, an interesting extension could be to investigate the possibilities of applying

source routing to data center networks.

Larger-scale fat-trees and irregular data center topologies

Our proposed schemes could easily be extended to larger-scale topologies, such as

fat-trees with 8- or 16-port switches. Figure 6.1 illustrates some of these state-of-the-art

topologies, including the VL2 and BCube topologies. Multipath Routing via Dynamic NIx-

Vectors could be directly applied to these topologies, because the modified BFS path

selection process does not depend on the topology used. For Dual IPv4/IPv6 Routing with

Front-Back, when applied to fat-trees with 8- or 16-port switches, one could re-use the

static routing setup in Figure 2.2, scaled to fit the larger topology.

A possible extension of our work is to investigate the performance of our proposed

schemes in large topologies. Specifically, we could implement and test our N-path “Front-

Back” Algorithm, because there can be more shortest paths available between each source-

destination pair. In addition, we could see how algorithm performance will be affected in

other topologies where the multiple paths have different delays.

www.manaraa.com

101

Investigate other path selection algorithms for BFS

Another possible extension is to investigate other path selection algorithms in the

breadth-first search (BFS) phase of Dynamic NIx-Vector Routing, for adapting to different

scenarios as appropriate. For different groups of communication patterns in the data center,

we could use appropriate path selection policies to improve traffic balance. The first step

would be further modifying the BFS algorithm in ns-3’s NIx-Vector routing code, so that

we can store all the discovered shortest paths for retrieval; alternatively, we can generate

NIx-Vectors for all the multiple paths, and store them for retrieval later.

A possible metric for ranking different path selection schemes’ performance would

be to count the number of simultaneous connections before Incast collapse. The higher the

number, the more effectively that scheme works to alleviate Incast.

Experiment on real network testbeds

Besides showing advantages in theoretical calculation and simulations, an

interesting extension would be to validate our proposed schemes in real-life scenarios. For

example, we can run experiments using the Open Network Laboratory (ONL) [106] or

Emulab [107] and gather statistics on how well our proposed schemes perform, under

different circumstances. ONL and Emulab are both open to public researchers. We could

create different data center topologies over these testbeds to validate our schemes and

observe their performance.

Implementation of the proposed approaches

To date our proposed approaches to mitigating the Incast problem show good

promise. We conclude here with a brief discussion of their implementation issues.

www.manaraa.com

102

NIx-Vector/Source routing requires the storage of routing path information in

packet headers. For source routing, existing IPv4 Options such as “strict source and record

route” (SSRR) and “loose source and record route” (LSRR) could be used. For NIx-Vector

routing, in the complete version of the NIx-Vector paper by Riley et al. [68], the authors

proposed several new IPv4 Options for this purpose, such as the “Record-NIx-Vector

Option” and “Use-NIx-Vector Option”.

IPv6 defines a set of additional headers called “extension headers” to achieve

similar functionalities as IPv4 Options. Among these is the routing header, which provides

support for source routing and IPv6 mobility. This header allows a source to list one or

more intermediate nodes that a packet must “visit” on its way to the destination, so it can

be utilized by NIx-Vector/Source routing.

The issues are somewhat different for Virtual Table-Based Routing (specifically,

Dual IPv4/IPv6 Routing). As mentioned earlier in Chapter 2, the implementation is

straightforward when data center switches are dual-stacked, i.e. with both IPv4 and IPv6

enabled. If this is not the case, a more complex alternative would be to install multiple IP

stacks on different interfaces of a switch and then set their routing tables so that packets

received on different interfaces are routed differently.

The Front-Back Algorithm stands on its own and is straightforward to implement

in conjunction with any scheme for which the existing multiple paths between each source-

destination pair are used simultaneously.

www.manaraa.com

103

APPENDIX

SIMULATION SOURCE CODE AND SCRIPTS

The following source codes and scripts are available in the srccode_scripts directory:

File Name Description

dnvr.cc Complete ns-3 simulation source code for Random, Stride(2) and Stride(4)

dnvr2.cc Complete ns-3 simulation source code for 3 Senders, 5 Senders and 7 Senders

runsim.sh
Bash script to run simulations under different routing schemes, for Random,

Stride(2) and Stride(4)

runsim2.sh Same as above, but for 3 Senders, 5 Senders and 7 Senders

runbatch.sh
Bash script using GNU parallel to run multiple simulations at the same time,

for Random, Stride(2) and Stride(4)

runbatch2.sh Same as above, but for 3 Senders, 5 Senders and 7 Senders

rproc.sh
Bash script to process simulation results and generate statistics, for Random,

Stride(2) and Stride(4)

rproc2.sh Same as above, but for 3 Senders, 5 Senders and 7 Senders

netgoodput.m MATLAB script to estimate the best-case improvement (Fig. 1.6)

genplots.m
MATLAB script to make plots from simulation output, for Random, Stride(2)

and Stride(4) (Figs. 5.11-5.13)

genplots2.m Same as above, but for 3 Senders, 5 Senders and 7 Senders (Figs. 5.14-5.17)

cwndplot.m MATLAB script to plot traced TCP congestion window sizes (Fig. 5.10)

avgcalc.m MATLAB script to calculate average values over 20 simulation runs

drcalc.mw Maple program to plot transfer finish time for 2 paths (Fig. 4.3)

ncs_2paths.mw Maple program to plot packet disorder for 2 paths (Figs. 4.3-4.4)

ncs_4paths.mw Maple program to plot packet disorder for 4 paths (Fig. 4.6)

oprcalc.mw Maple program to plot the oblivious performance ratios (Fig. 5.1)

ft43load.mw Maple program to analyze the oblivious performance ratios (Table 5.2)

ns3bfsmod.diff Diff file showing our changes to ns-3 NIx-Vector BFS code to achieve RLB

www.manaraa.com

104

REFERENCES

[1] Dean, J. and Ghemawat, S., MapReduce: simplified data processing on large clusters.
Communications of the ACM, 2008. 51(1): p. 107-113.

[2] Shvachko, K., Kuang, H., Radia, S., and Chansler, R. The Hadoop Distributed File
System. in 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST). 2010.

[3] Chen, Y., Griffit, R., Zats, D., and Katz, R.H., Understanding tcp incast and its
implications for big data workloads. University of California at Berkeley, Tech.
Rep, 2012.

[4] Vasudevan, V., Phanishayee, A., Shah, H., Krevat, E., Andersen, D.G., Ganger, G.R.,
Gibson, G.A., and Mueller, B. Safe and effective fine-grained TCP retransmissions
for datacenter communication. in ACM SIGCOMM computer communication
review. 2009. ACM.

[5] Parallel Data Lab Project: INCAST. Available from: http://www.pdl.cmu.edu/Incast/.

[6] Phanishayee, A., Krevat, E., Vasudevan, V., Andersen, D.G., Ganger, G.R., Gibson,
G.A., and Seshan, S. Measurement and Analysis of TCP Throughput Collapse in
Cluster-based Storage Systems. in FAST. 2008.

[7] Chen, Y., Griffith, R., Liu, J., Katz, R.H., and Joseph, A.D. Understanding TCP incast
throughput collapse in datacenter networks. in Proceedings of the 1st ACM
workshop on Research on enterprise networking. 2009. ACM.

[8] Nagle, D., Serenyi, D., and Matthews, A. The panasas activescale storage cluster:
Delivering scalable high bandwidth storage. in Proceedings of the 2004
ACM/IEEE conference on Supercomputing. 2004. IEEE Computer Society.

[9] Ghemawat, S., Gobioff, H., and Leung, S.-T. The Google file system. in ACM SIGOPS
operating systems review. 2003. ACM.

[10] Alexander, F.J., Hoisie, A., and Szalay, A., Big data [Guest editorial]. Computing in
Science & Engineering, 2011. 6(13): p. 10-13.

[11] Cheng, Y., Qin, C., and Rusu, F. GLADE: big data analytics made easy. in
Proceedings of the 2012 ACM SIGMOD International Conference on Management
of Data. 2012. ACM.

[12] Huai, Y., Lee, R., Zhang, S., Xia, C.H., and Zhang, X. DOT: a matrix model for
analyzing, optimizing and deploying software for big data analytics in distributed
systems. in Proceedings of the 2nd ACM Symposium on Cloud Computing. 2011.
ACM.

[13] Bajda-Pawlikowski, K., Abadi, D.J., Silberschatz, A., and Paulson, E. Efficient
processing of data warehousing queries in a split execution environment. in
Proceedings of the 2011 ACM SIGMOD International Conference on Management
of data. 2011. ACM.

www.manaraa.com

105

[14] Zheng, H. and Qiao, C. An effective approach to preventing TCP incast throughput
collapse for data center networks. in Global Telecommunications Conference
(GLOBECOM 2011), 2011 IEEE. 2011. IEEE.

[15] Rajanna, V.S., Shah, S., Jahagirdar, A., Lemoine, C., and Gopalan, K. Xco: Explicit
coordination to prevent network fabric congestion in cloud computing cluster
platforms. in Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing. 2010. ACM.

[16] Krevat, E., Vasudevan, V., Phanishayee, A., Andersen, D.G., Ganger, G.R., Gibson,
G.A., and Seshan, S. On application-level approaches to avoiding TCP throughput
collapse in cluster-based storage systems. in Proceedings of the 2nd international
workshop on Petascale data storage: held in conjunction with Supercomputing'07.
2007. ACM.

[17] Zhang, P., Wang, H., and Cheng, S. Shrinking mtu to mitigate tcp incast throughput
collapse in data center networks. in Communications and Mobile Computing
(CMC), 2011 Third International Conference on. 2011. IEEE.

[18] Kulkarni, S. and Agrawal, P. A probabilistic approach to address TCP incast in data
center networks. in 2011 31st International Conference on Distributed Computing
Systems Workshops. 2011. IEEE.

[19] Adesanmi, A. and Mhamdi, L. Controlling TCP Incast congestion in data centre
networks. in 2015 IEEE International Conference on Communication Workshop
(ICCW). 2015.

[20] Yongmao, R., Jun, L., Guodong, W., Lingling, L., and Shanshan, S. SA-TCP: A novel
approach to mitigate TCP Incast in data center networks. in 2015 International
Conference on Computing and Network Communications (CoCoNet). 2015.

[21] Wu, H., Feng, Z., Guo, C., and Zhang, Y., ICTCP: Incast congestion control for TCP
in data-center networks. IEEE/ACM Transactions on Networking (TON), 2013.
21(2): p. 345-358.

[22] Ramakrishnan, K., Floyd, S., and Black, D. The addition of explicit congestion
notification (ECN) to IP. RFC 3168, , DOI 10.17487/RFC3168. 2001; Available
from: http://www.rfc-editor.org/info/rfc3168.

[23] Zhang, Y. and Ansari, N. On mitigating TCP incast in data center networks. in
INFOCOM, 2011 Proceedings IEEE. 2011. IEEE.

[24] Wilson, C., Ballani, H., Karagiannis, T., and Rowtron, A. Better never than late:
Meeting deadlines in datacenter networks. in ACM SIGCOMM Computer
Communication Review. 2011. ACM.

[25] Alizadeh, M., Greenberg, A., Maltz, D.A., Padhye, J., Patel, P., Prabhakar, B.,
Sengupta, S., and Sridharan, M. Data center tcp (dctcp). in ACM SIGCOMM
computer communication review. 2010. ACM.

[26] Tseng, H.W., Yang, T.T., and Peng, Y.H. An urgency and congestion control scheme
for larger-scale TCP incast problem in data center. in 2015 IEEE Symposium on
Computers and Communication (ISCC). 2015.

www.manaraa.com

106

[27] Hwang, J., Yoo, J., and Choi, N., Deadline and Incast Aware TCP for cloud data
center networks. Computer Networks, 2014. 68: p. 20-34.

[28] Pfister, G.F., An introduction to the infiniband architecture. High Performance Mass
Storage and Parallel I/O, 2001. 42: p. 617-632.

[29] Boden, N.J., Cohen, D., Felderman, R.E., Kulawik, A.E., Seitz, C.L., Seizovic, J.N.,
and Su, W.-K., Myrinet: A gigabit-per-second local area network. IEEE micro,
1995. 15(1): p. 29-36.

[30] Yu, Y., Aung, K.M.M., Tong, E.K.K., and Foh, C.H. Dynamic load balancing
multipathing in Data Center Ethernet. in 2010 IEEE International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems.
2010. IEEE.

[31] Al-Fares, M., Loukissas, A., and Vahdat, A. A scalable, commodity data center
network architecture. in ACM SIGCOMM Computer Communication Review.
2008. ACM.

[32] Greenberg, A., Hamilton, J.R., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz, D.A.,
Patel, P., and Sengupta, S., VL2: a scalable and flexible data center network.
Communications of the ACM, 2011. 54(3): p. 95-104.

[33] Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y., and Lu, S. Dcell: a scalable and fault-
tolerant network structure for data centers. in ACM SIGCOMM Computer
Communication Review. 2008. ACM.

[34] Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y., and Lu, S.,
BCube: a high performance, server-centric network architecture for modular data
centers. ACM SIGCOMM Computer Communication Review, 2009. 39(4): p. 63-
74.

[35] Greenberg, A., Lahiri, P., Maltz, D.A., Patel, P., and Sengupta, S. Towards a next
generation data center architecture: scalability and commoditization. in
Proceedings of the ACM workshop on Programmable routers for extensible
services of tomorrow. 2008. ACM.

[36] Abu-Libdeh, H., Costa, P., Rowstron, A., O'Shea, G., and Donnelly, A., Symbiotic
routing in future data centers. ACM SIGCOMM Computer Communication
Review, 2010. 40(4): p. 51-62.

[37] Leiserson, C.E., Fat-trees: universal networks for hardware-efficient
supercomputing. IEEE transactions on Computers, 1985. 100(10): p. 892-901.

[38] Clos, C., A Study of Non‐Blocking Switching Networks. Bell System Technical
Journal, 1953. 32(2): p. 406-424.

[39] Lin, X.-Y., Chung, Y.-C., and Huang, T.-Y. A multiple LID routing scheme for fat-
tree-based InfiniBand networks. in Parallel and Distributed Processing
Symposium, 2004. Proceedings. 18th International. 2004. IEEE.

[40] Valiant, L.G. and Brebner, G.J. Universal schemes for parallel communication. in
Proceedings of the thirteenth annual ACM symposium on Theory of computing.
1981. ACM.

www.manaraa.com

107

[41] Zats, D., Das, T., Mohan, P., Borthakur, D., and Katz, R., DeTail: reducing the flow
completion time tail in datacenter networks. ACM SIGCOMM Computer
Communication Review, 2012. 42(4): p. 139-150.

[42] Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., and Vahdat, A. Hedera:
Dynamic Flow Scheduling for Data Center Networks. in NSDI. 2010.

[43] Schlansker, M., Turner, Y., Tourrilhes, J., and Karp, A. Ensemble routing for
datacenter networks. in Proceedings of the 6th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems. 2010. ACM.

[44] Wu, W., Turner, Y., and Schlansker, M. Routing optimization for ensemble routing.
in Proceedings of the 2011 ACM/IEEE Seventh Symposium on Architectures for
Networking and Communications Systems. 2011. IEEE Computer Society.

[45] Miura, S.i., Boku, T., Okamoto, T., and Hanawa, T. A dynamic routing control system
for high-performance PC cluster with multi-path Ethernet connection. in Parallel
and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on.
2008. IEEE.

[46] Mudigonda, J., Yalagandula, P., Al-Fares, M., and Mogul, J.C., SPAIN: design and
algorithms for constructing large data-center ethernets from commodity switches.
2009, Tech. Rep. HPL-2009-241, HP Labs.

[47] Raiciu, C., Pluntke, C., Barre, S., Greenhalgh, A., Wischik, D., and Handley, M. Data
center networking with multipath TCP. in Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks. 2010. ACM.

[48] Raiciu, C., Barre, S., Pluntke, C., Greenhalgh, A., Wischik, D., and Handley, M.
Improving datacenter performance and robustness with multipath TCP. in ACM
SIGCOMM Computer Communication Review. 2011. ACM.

[49] Ford, A., Raiciu, C., Handley, M., and Bonaventure, O. TCP extensions for multipath
operation with multiple addresses. RFC 6824, DOI 10.17487/RFC6824. 2013;
Available from: http://www.rfc-editor.org/info/rfc6824.

[50] Li, L., Hu, N., Liu, K., Fu, B., Chen, M., and Zhang, L., AMTCP: an adaptive multi-
path transmission control protocol, in Proceedings of the 12th ACM International
Conference on Computing Frontiers. 2015, ACM: Ischia, Italy. p. 1-8.

[51] Kheirkhah, M., Wakeman, I., and Parisis, G. MMPTCP: A multipath transport
protocol for data centers. in IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications. 2016.

[52] Wang, W., Zhou, L., and Sun, Y. Improving Multipath TCP for Latency Sensitive
Flows in the Cloud. in 2016 5th IEEE International Conference on Cloud
Networking (Cloudnet). 2016.

[53] Li, M., Lukyanenko, A., Ou, Z., Ylä-Jääski, A., Tarkoma, S., Coudron, M., and Secci,
S., Multipath Transmission for the Internet: A Survey. IEEE Communications
Surveys & Tutorials, 2016. 18(4): p. 2887-2925.

www.manaraa.com

108

[54] Habib, S., Qadir, J., Ali, A., Habib, D., Li, M., and Sathiaseelan, A., The past, present,
and future of transport-layer multipath. Journal of Network and Computer
Applications, 2016. 75: p. 236-258.

[55] Li, M., Lukyanenko, A., Tarkoma, S., and Ylä-Jääski, A., MPTCP incast in data
center networks. China Communications, 2014. 11(4): p. 25-37.

[56] Alizadeh, M., Edsall, T., Dharmapurikar, S., Vaidyanathan, R., Chu, K., Fingerhut,
A., Lam, V.T., Matus, F., Pan, R., Yadav, N., and Varghese, G., CONGA:
distributed congestion-aware load balancing for datacenters. SIGCOMM Comput.
Commun. Rev., 2014. 44(4): p. 503-514.

[57] Cao, Y., Xu, M., Fu, X., and Dong, E., Explicit multipath congestion control for data
center networks, in Proceedings of the ninth ACM conference on Emerging
networking experiments and technologies. 2013, ACM: Santa Barbara, California,
USA. p. 73-84.

[58] Chen, G., Lu, Y., Meng, Y., Li, B., Tan, K., Pei, D., Cheng, P., Luo, L., Xiong, Y.,
Wang, X., and Zhao, Y., Fast and cautious: leveraging multi-path diversity for
transport loss recovery in data centers, in Proceedings of the 2016 USENIX
Conference on Usenix Annual Technical Conference. 2016, USENIX Association:
Denver, CO, USA. p. 29-42.

[59] Lappetelainen, A., Equal Cost Multipath Routing in IP Networks. Faculty of
Electronics, Communications and Automation, 2011.

[60] Curtis, A.R., Kim, W., and Yalagandula, P. Mahout: Low-overhead datacenter traffic
management using end-host-based elephant detection. in INFOCOM, 2011
Proceedings IEEE. 2011. IEEE.

[61] Estan, C. and Varghese, G., New directions in traffic measurement and accounting:
Focusing on the elephants, ignoring the mice. ACM Transactions on Computer
Systems (TOCS), 2003. 21(3): p. 270-313.

[62] Wu, X. and Yang, X. Dard: Distributed adaptive routing for datacenter networks. in
Distributed Computing Systems (ICDCS), 2012 IEEE 32nd International
Conference on. 2012. IEEE.

[63] Curtis, A.R., Mogul, J.C., Tourrilhes, J., Yalagandula, P., Sharma, P., and Banerjee,
S., DevoFlow: scaling flow management for high-performance networks. ACM
SIGCOMM Computer Communication Review, 2011. 41(4): p. 254-265.

[64] Raiciu, C., Handley, M., and Wischik, D. Coupled congestion control for multipath
transport protocols. RFC 6356, DOI 10.17487/RFC6356. 2011; Available from:
http://www.rfc-editor.org/info/rfc6356.

[65] Farrington, N., Multipath TCP under Massive Packet Reordering. 2009, University
of California at San Diego.

[66] Leung, K.-C. and Li, V.O. Generalized load sharing for packet-switching networks.
in Network Protocols, 2000. Proceedings. 2000 International Conference on. 2000.
IEEE.

www.manaraa.com

109

[67] Wischik, D., Handley, M., and Braun, M.B., The resource pooling principle. ACM
SIGCOMM Computer Communication Review, 2008. 38(5): p. 47-52.

[68] Riley, G.F., Ammar, M.H., and Zegura, E.W. Efficient routing using nix-vectors. in
High Performance Switching and Routing, 2001 IEEE Workshop on. 2001. IEEE.

[69] ICS 161 Lecture notes by D. Eppstein. Available from:
http://www.ics.uci.edu/~eppstein/161/960215.html.

[70] Ohring, S.R., Ibel, M., Das, S.K., and Kumar, M.J. On generalized fat trees. in
Parallel Processing Symposium, 1995. Proceedings., 9th International. 1995.
IEEE.

[71] Leiserson, C.E., Abuhamdeh, Z.S., Douglas, D.C., Feynman, C.R., Ganmukhi, M.N.,
Hill, J.V., Hillis, D., Kuszmaul, B.C., Pierre, M.A.S., Wells, D.S., Wong, M.C.,
Yang, S.-W., and Zak, R., The network architecture of the Connection Machine
CM-5 (extended abstract), in Proceedings of the fourth annual ACM symposium on
Parallel algorithms and architectures. 1992, ACM: San Diego, California, USA.
p. 272-285.

[72] Gomez, C., Gilabert, F., Gomez, M.E., López, P., and Duato, J. Deterministic versus
adaptive routing in fat-trees. in 2007 IEEE International Parallel and Distributed
Processing Symposium. 2007. IEEE.

[73] Johnson, G., Kerbyson, D.J., and Lang, M. Optimization of infiniband for scientific
applications. in Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on. 2008. IEEE.

[74] Zahavi, E., Johnson, G., Kerbyson, D.J., and Lang, M., Optimized InfiniBandTM fat‐
tree routing for shift all‐to‐all communication patterns. Concurrency and
Computation: Practice and Experience, 2010. 22(2): p. 217-231.

[75] Rodriguez, G., Minkenberg, C., Beivide, R., Luijten, R.P., Labarta, J., and Valero,
M. Oblivious routing schemes in extended generalized fat tree networks. in 2009
IEEE International Conference on Cluster Computing and Workshops. 2009. IEEE.

[76] Dally, W.J. and Towles, B.P., Oblivious Routing, in Principles and Practices of
Interconnection Networks. 2004, Elsevier. p. 180.

[77] Kulkarni, S.B., Incast-free TCP for Data Center Networks. 2012, Auburn University.

[78] Padhye, J., Firoiu, V., Towsley, D., and Kurose, J., Modeling TCP throughput: a
simple model and its empirical validation, in Proceedings of the ACM SIGCOMM
'98 conference on Applications, technologies, architectures, and protocols for
computer communication. 1998, ACM: Vancouver, British Columbia, Canada. p.
303-314.

[79] Villamizar, C. and Song, C., High performance TCP in ANSNET. ACM SIGCOMM
Computer Communication Review, 1994. 24(5): p. 45-60.

[80] Morris, R. TCP behavior with many flows. in Network Protocols, 1997. Proceedings.,
1997 International Conference on. 1997. IEEE.

www.manaraa.com

110

[81] Morris, R. Scalable TCP congestion control. in INFOCOM 2000. Nineteenth Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE. 2000. IEEE.

[82] Appenzeller, G., Keslassy, I., and McKeown, N., Sizing router buffers. SIGCOMM
Comput. Commun. Rev., 2004. 34(4): p. 281-292.

[83] Dhamdhere, A. and Dovrolis, C., Open issues in router buffer sizing. ACM
SIGCOMM Computer Communication Review, 2006. 36(1): p. 87-92.

[84] Yuan, X., Nienaber, W., Duan, Z., and Melhem, R., Oblivious routing in fat-tree
based system area networks with uncertain traffic demands. IEEE/ACM
Transactions on Networking (TON), 2009. 17(5): p. 1439-1452.

[85] Hsieh, H.-Y. and Sivakumar, R., A transport layer approach for achieving aggregate
bandwidths on multi-homed mobile hosts. Wireless Networks, 2005. 11(1-2): p. 99-
114.

[86] Iyengar, J.R., Amer, P.D., and Stewart, R. Receive buffer blocking in concurrent
multipath transfer. in GLOBECOM'05. IEEE Global Telecommunications
Conference, 2005. 2005. IEEE.

[87] Kandula, S., Katabi, D., Sinha, S., and Berger, A., Dynamic load balancing without
packet reordering. ACM SIGCOMM Computer Communication Review, 2007.
37(2): p. 51-62.

[88] Baldini, A., De Carli, L., and Risso, F. Increasing performances of TCP data transfers
through multiple parallel connections. in Computers and Communications, 2009.
ISCC 2009. IEEE Symposium on. 2009. IEEE.

[89] Han, H., Shakkottai, S., Hollot, C.V., Srikant, R., and Towsley, D., Multi-path tcp: a
joint congestion control and routing scheme to exploit path diversity in the internet.
IEEE/ACM Transactions on Networking (TON), 2006. 14(6): p. 1260-1271.

[90] Rodriguez, P. and Biersack, E.W., Dynamic parallel access to replicated content in
the Internet. IEEE/ACM Transactions on Networking (TON), 2002. 10(4): p. 455-
465.

[91] Hasegawa, Y., Yamaguchi, I., Hama, T., Shimonishi, H., and Murase, T. Improved
data distribution for multipath TCP communication. in GLOBECOM'05. IEEE
Global Telecommunications Conference, 2005. 2005. IEEE.

[92] Applegate, D. and Cohen, E., Making intra-domain routing robust to changing and
uncertain traffic demands: understanding fundamental tradeoffs, in Proceedings of
the 2003 conference on Applications, technologies, architectures, and protocols for
computer communications. 2003, ACM: Karlsruhe, Germany. p. 313-324.

[93] Zhang, Y. and Ansari, N., On Architecture Design, Congestion Notification, TCP
Incast and Power Consumption in Data Centers. IEEE Communications Surveys
& Tutorials, 2013. 15(1): p. 39-64.

[94] Tam, A.S.W., Xi, K., Xu, Y., and Chao, H.J. Preventing TCP incast throughput
collapse at the initiation, continuation, and termination. in 2012 IEEE 20th
International Workshop on Quality of Service. 2012.

www.manaraa.com

111

[95] The ns-3 Network Simulator. Available from: http://www.nsnam.org/.

[96] PyViz ns-3 Simulation Visualizer. Available from:
http://www.nsnam.org/wiki/index.php/PyViz.

[97] Carneiro, G., Fortuna, P., and Ricardo, M. FlowMonitor: a network monitoring
framework for the network simulator 3 (NS-3). in Proceedings of the Fourth
International ICST Conference on Performance Evaluation Methodologies and
Tools. 2009. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering).

[98] Tange, O., Gnu parallel-the command-line power tool. The USENIX Magazine,
2011. 36(1): p. 42-47.

[99] Chrysos, N., Neeser, F., Gusat, M., Minkenberg, C., Denzel, W., Basso, C., Rudquist,
M., Valk, K., and Vanderpool, B., Large switches or blocking multi-stage
networks? An evaluation of routing strategies for datacenter fabrics. Computer
Networks, 2015. 91: p. 316-328.

[100] Dukkipati, N. and McKeown, N., Why flow-completion time is the right metric for
congestion control. SIGCOMM Comput. Commun. Rev., 2006. 36(1): p. 59-62.

[101] Dean, J. and Barroso, L.A., The tail at scale. Commun. ACM, 2013. 56(2): p. 74-
80.

[102] Gummadi, P.K., Madhyastha, H.V., Gribble, S.D., Levy, H.M., and Wetherall, D.
Improving the Reliability of Internet Paths with One-hop Source Routing. in OSDI.
2004.

[103] Johnson, D.B., Maltz, D.A., and Broch, J., DSR: The dynamic source routing
protocol for multi-hop wireless ad hoc networks. Ad hoc networking, 2001. 5: p.
139-172.

[104] Leung, R., Liu, J., Poon, E., Chan, A.-L., and Li, B. MP-DSR: a QoS-aware multi-
path dynamic source routing protocol for wireless ad-hoc networks. in Local
Computer Networks, 2001. Proceedings. LCN 2001. 26th Annual IEEE Conference
on. 2001. IEEE.

[105] Fang, W., Liang, X., Sun, Y., and Vasilakos, A.V., Network element scheduling for
achieving energy-aware data center networks. International Journal of Computers
Communications & Control, 2014. 7(2): p. 241-251.

[106] Open Network Laboratory (ONL). Available from: https://onl.wustl.edu/.

[107] Emulab - Network Emulation Testbed. Available from: http://www.emulab.net/.

	Multipath approaches to avoiding TCP Incast
	Recommended Citation

	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1 Introduction
	1.1 Background and Motivation
	1.1.1 The Data Center Incast Problem
	1.1.2 Newer Data Center Topologies with Multiple Paths
	1.1.3 The Fat-Tree Architecture
	1.1.4 Oblivious Routing vs. Adaptive Routing

	1.2 Related Work
	1.3 Key Idea
	1.4 Estimation of Best-Case Improvement
	1.5 Summary of Our Contributions

	Chapter 2 Multipath Routing for Data Center Networks
	2.1 What Causes Incast? – A Brief Investigation
	2.2 Multipath Routing via Dynamic NIx-Vectors
	2.2.1 What is a NIx-Vector
	2.2.2 Details of Proposed Algorithm

	2.3 Virtual Table-Based Multipath Routing
	2.3.1 Algorithm Description
	2.3.2 Example: Dual IPv4/IPv6 Routing

	2.4 Irregular Traffic Extensions
	2.5 Conclusions

	Chapter 3 Bridging the Proposed Schemes to Incast
	3.1 TCP Incast and Flow Loss Rate
	3.2 Switch Load and Flow Loss Rate
	3.3 Reduced Switch Load under Proposed Schemes
	3.3.1 Fat-Tree Properties
	3.3.2 Fat-Tree Routing: Definitions
	3.3.3 Formal Analysis
	3.3.3.1 Normal Routing
	3.3.3.2 Dynamic NIx-Vector Routing
	3.3.3.3 Multipath Routing via Dynamic NIx-Vectors (using all paths)
	3.3.3.4 Multipath Routing via Dynamic NIx-Vectors (using ,𝑿/𝒌. paths)
	3.3.3.5 Summary

	3.4 Conclusions

	Chapter 4 The Front-Back Algorithm and Its Performance Evaluation
	4.1 Reordering Avoidance: The Front-Back Algorithm
	4.2 Integration with Multipath Routing
	4.3 Comparison with Existing Algorithms
	4.4 Further Development – Generalization to N-paths
	4.4.1 How the Generalization Works
	4.4.2 Comparison with Existing Algorithms

	4.5 Conclusions

	Chapter 5 Performance Analysis
	5.1 The Oblivious Performance Ratio (OPR)
	5.1.1 Definitions of the OPR
	5.1.2 Analysis on the OPR

	5.2 Traffic Patterns and Analysis
	5.2.1 Typical Incast Traffic Patterns
	5.2.2 Worst Case Patterns

	5.3 Validation by Simulations on the ns-3 Platform
	5.3.1 Simulation Setup
	5.3.1.1 Simulation Parameters
	5.3.1.2 Illustrations of the Proposed Schemes
	5.3.1.3 Traffic Patterns Investigated
	5.3.1.4 Tools for Gathering Statistics

	5.3.2 Sample Outputs from Simulation
	5.3.3 Addressing the Incast Problem
	5.3.4 Performance Study

	5.4 Conclusions

	Chapter 6 Conclusions and Possible Extensions
	6.1 Summary of Research
	6.2 Possible Extensions

	Appendix Simulation Source Code and Scripts
	REFERENCES

